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1 INTRODUCTION

Introducing vehicle automation technologies in modern vehicles allows the human driver to drive without constantly
engaging in the driving task. Consequently, drivers are more likely to attend to non-driving-related tasks [4]. This
engagement in non-driving-related tasks—or NDRTs—may compromise drivers’ situation awareness [9, 25] and their
subsequent capabilities to resume control if a transition is needed [see 5, 23]. This issue is especially critical for current
vehicle automation technologies with SAE levels 2/3 capabilities [29]. For these levels, drivers must be able to safely
recover control of the driving task if the vehicle cannot deal with its operational design domain (ODD) limitations.

Recent research in the field of driver state monitoring (DSM) systems has suggested that better attention management,
e.g., adequately splitting drivers’ attentional resources between the driving task and NDRTs, is important for maintaining
situation awareness [31, 40] and affects take-over performance during safety-critical scenarios [18, 21, 22, 24, 38]. With
that in mind, recent driver state monitoring systems are focused on supporting safe driving, mediating drivers’
engagement with NDRTs, by using advanced driver distraction warnings. In recognition of the safety role they play,
these systems will be required in European vehicle makers1 as part of the revised General Safety Regulation and are
being proposed to be mandatory in the United States of America2.

Past findings in the literature support the idea that the effectiveness of attention management strategies in automated
vehicles (AVs) may be influenced by the location of the NDRT. For instance, using a driving simulator study, Gerber et al.
[11] have compared drivers’ frequency of NDRT self-interruptions when engaging in an NDRT presented in a handheld
mobile device, with that of a head-up display (HUD). The authors’ results suggest that when using the HUD, drivers are
more likely to re-focus their attention towards the forward roadway and centre of the road, compared to when using a
mobile device. Their results suggest that HUDs may be a promising solution for NDRT presentation. By presenting
information on the windshield, HUDs may foster better situation awareness and better attention management as they
help direct the driver’s visual attention to the forward roadway. These results are supported by [19, 20], who reported
that drivers in the same experiment setup had better reaction times to a takeover task, and reported lower levels of
workload, when engaging with the NDRT using a HUD, when compared to a mobile phone. Xu et al. [37] have also
demonstrated the value of HUDs as an efficient tool for conveying information to the driver in a transition of control
scenario, helping them maintain situation awareness.

Despite the potential contribution of HUDs to driver safety in automation, such technology is not without its
limitations. For instance, studies in aviation [see 35] have demonstrated that flight pilots using HUDs can suffer from
attention tunnelling and impaired perception capabilities compared to those using conventional instrument panel
interfaces. Similar issues were reported in the automotive field [28] whereby HUDs may occlude drivers’ view of relevant
information and tunnel drivers’ attention due to the presentation of continuous salient stimuli. Despite advocating
in favour of using HUDs for AVs, Pečečnik et al. [32] have warned about the potential increased scenario complexity
caused by HUDs, which may compromise drivers’ visual scanning capabilities.

1Revised General Safety Regulation - Regulation (EU) 2019/2144 of the European Parliament and the Council. https://eur-lex.europa.eu/eli/reg/2019/2144/oj,
November 2019. Retrieved: June 2024.
2Stay Aware for Everyone (SAFE) act, https://www.congress.gov/bill/117th-congress/senate-bill/1406 April 2021. Retrieved: June 2024.
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We argue that the increased visual scenario complexity caused by NDRTs presented in HUDs can compromise
drivers’ abilities to safely scan the environment. Past studies on this topic [11, 20] have relied on gaze concentration
between the road environment and the NDRT to assess drivers’ visual attention. While these measures provide insights
into the overall pattern of attention distribution, they have limited capabilities in explaining safety-related scanning
patterns and attention shifts. Attention shifts are relevant in complex driving scenarios, as they can reveal how quickly
and efficiently drivers can re-focus their attention on critical areas of the road when necessary. Thereby, attention
shifts can offer additional insights into drivers’ scanning behaviour and potential safety implications. Hence, this study
aimed to overcome the limitations of previous studies highlighted above by assessing drivers’ attention management
strategies through the observation of their attention shifts throughout the environment. The Markov Chains approach
offers unique and valuable insights into drivers’ attention management strategies as it considers the temporal aspects
of gaze transitions [see 12, 34].

Previous studies have successfully depicted drivers’ hazard perception scanning patterns in both manual driving and
vehicle automation, using Markov Chains of gaze transitions between areas of interest [see 12, 34]. Markov Chains are
mathematical models that describe a sequence of events or states. In these models, the probability of each event depends
only on the state attained in the previous event. In the context of gaze analysis, Markov Chains can be used to model
the probability of a driver’s gaze transitioning from one area of interest to another based on their current gaze location.

Generic visual attention shift and gaze transition between areas of interest have been used in previous studies
to understand drivers’ information processing on complex scenarios, such as lane change manoeuvres [6, 7, 30, 33].
However, this approach does not provide contextual information regarding the time and origin of drivers’ transition.
Previous studies have demonstrated the value of Markov Chain analysis in providing insights into drivers’ gaze patterns,
attention shifts and attention allocation between different areas of interest. These insights can be linked to safety-
relevant behaviours and potential crash incidents [34]. The main advantage of Markov Chains of gaze transitions
as a tool to understand drivers’ attention management is that it provides context to the drivers’ shifts of attention,
providing not only information about where the attention is being diverted to but also from where it is being drawn. For
example, studies from Gonçalves et al. [12] have shown that during automation, drivers were more likely to perform
gaze transitions between two information sources without attending to the road centre, exposing the driver to risks
regarding rear-end collisions.

Markov Chains are commonly used as a tool for developing forecasting models in different fields, such as stock market
prediction [see 14]. In the field of human behaviour, Markov Chains were successfully introduced in computational
models, aiming to describe and replicate human gaze behaviour [see 1–3, 34]. More recent studies were able to use
Markov Chains of gaze transitions to understand drivers’ interactions with AVs in terms of lane-change manoeuvres [12],
situation awareness estimation [31], prediction of takeover reactions [36], and interactions with in-vehicle interfaces
[13]. However, its application to understanding drivers’ interactions with non-driving-related tasks is largely unexplored.

In light of the research gap mentioned above, this study employed an advanced driving simulator to compare gaze
patterns in three different conditions: 1) automated driving without NDRTs (baseline), 2) NDRT using a mobile phone
(mobile), and 3) NDRT using a HUD. To better understand drivers’ attention management strategies and potential
safety implications, we conducted a post-hoc analysis of the data, aiming to address the following research questions: 1)
How do drivers’ engagement in NDRTs affect their attention distribution and gaze transitions between areas of interest
(AoIs)? 2) How does the use of HUD as an HMI for NDRTs influence drivers’ visual scanning and attention management
strategies? Our approach aimed to extend the application of Markov Chain analysis to answer these questions.
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Our contribution relies on the exploration of temporal aspects of drivers’ attention management. This is done by
observing the frequency of drivers’ attention shifts across the environment during extended automated driving periods
through the use of Markov Chains. While techniques like gaze dispersion and concentration analysis provide an overall
picture of where drivers’ attention is being focused, our approach using Markov Chain analysis provides a more nuanced
understanding regarding the attention management strategies used to achieve such focus. In other words, it allows us
to quantify the probabilities of transitioning between different areas of interest in drivers’ gaze patterns. Our findings
have the potential to significantly impact future interface design for AVs and other complex systems where attention
management is critical, by providing empirical evidence on how different interface designs affect users’ attention
allocation and gaze patterns.

Beyond the automotive context, this research contributes to the broader field of HCI by demonstrating how attention
management can be analysed and understood in complex, multi-task environments. This work aligns with core HCI
principles of designing interfaces that support optimal user performance and safety, particularly in scenarios where
attention must be divided between multiple tasks or information sources. The methodology and insights presented
here may inform the design of interfaces in other domains where users must balance attention between a primary task
and secondary activities, such as in aviation, industrial control rooms, or even everyday multi-tasking scenarios with
mobile devices.

2 METHODOLOGY

We used an existing driving simulator study as an example to showcase the application and utility of Markov Chain
analysis in understanding drivers’ attention management strategies in conditionally AVs with NDRTs—in particular,
insights into the temporal aspects of drivers’ attention allocation and the potential to inform the future design of AVs
interfaces. Below, we first describe the simulator study for context, followed by a description of the Markov Chain
analysis.

2.1 Simulator Study

The dataset underlying the Markov Chain analysis is representative of other conditionally automated driving simulator
studies, including a driving simulator with eye-tracking hardware with a range of defined areas of interest (AoIs),
NDRTs (in this case, watching videos on different display modes: mobile phone vs. head-up display and baseline) and a
driving scenario with automated driving and a take-over request (TOR).

2.1.1 Experiment Apparatus. The study was conducted using an Advanced Driving Simulator. It features a real-vehicle
cabin with automatic transmission. The driving simulator is equipped with a surround-sound system that replicates
engine and environmental noise. Also, a six-degree-of-freedom motion platform provides the vehicle with movement in
three dimensions (see Figure 1). Three front-view projection screens (later defined as “Centre Screen”, “Left Screen”,
and “Right Screen”) provide a 180-degree high-resolution field of view for the driver, LCD monitors are used as the
lateral and rear-view mirrors to simulate side and rear-view images (later defined as “Right Mirror”, “Left Mirror”, “Rear
Mirror”).

To collect drivers’ eye-movement data during the experiment, Seeing Machines’ PC-DMS3 (PCDMS) eye-tracking
device was employed. The PCDMS uses a sensor bar installed on the vehicle’s dashboard above the steering wheel to
minimise occlusion. The sensor bar features an infrared camera embedded in the centre and a pair of pulsed infrared
lights on either side. This setup enables the PCDMS to monitor drivers’ head and eye movements effectively.
Manuscript submitted to ACM
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Fig. 1. Advanced Driving Simulator.

This study focused on the drivers’ eye-gaze dispersion during the automated drive stage and did not consider
the period after the TOR was issued. Head/eye-gaze tracking data were collected–at a sample rate of 46 Hz–for the
automated drive length, which was around 13 minutes. The recorded videos and data are then processed by Seeing
Machines’ proprietary algorithms, which generate detailed head and eye-movement measurements such as gaze data.
The extracted measurements included a) gaze yaw, b) gaze pitch, and c) the intersection of drivers’ gaze with different
AoIs.

For this study, we defined 10 AoIs (see Figure 2), namely “Centre Screen”, “Left Screen”, “Right Screen”, “Navigation”,
“Rear Mirror”, “Left Mirror”, “Right Mirror”, “Centre Console”, “Instrument Panel” and “Unknown”. The “Unknown” AoI
refers to any gaze fixations that do not fall within the boundaries of the other defined AoIs, representing moments
when the drivers’ gaze is directed towards areas not captured by the specific AoIs. It is relevant to note that when the
driver’s gaze is located in the “Unknown” AoI, they may not be attending to important driving-related information,
such as the road ahead (i.e., “Centre Screen” AoI), mirrors, or instrument panel, which could potentially impact their
situation awareness.

To create the driving scenarios for this study, real-world recorded videos were collected and then played back to
simulate automated driving in the simulator (building on [10, 16]). To record the videos, a car was manually driven
along one of the most recognisable routes in the city, and the ambient driving scene was recorded by cameras set up on
the vehicle. The driver aimed to mimic the performance of an AV by adhering to speed limits, maintaining passive
following distances, and employing highly anticipatory lane selections. Multiple trips were recorded, and three similar
but different trips were selected for the study. Each trip lasted approximately 15 minutes and followed the same route,
which included inner-city roads (approximately 5 minutes), a major motorway (approximately 8 minutes), and suburban
roads (approximately 2 minutes). A simulated planned TOR was issued at the exit of the motorway in all three scenarios.
All trips were conducted during the same time of day to ensure similar traffic density.

2.1.2 Participants. The study recruited 49 participants, but only 46 (23 males and 23 females) completed the experiments
with full head/eye-gaze tracking data records. The participants, aged between 20 and 62 years old, had a mean age of
32.3 years (standard deviation of 8.7 years). Participants were recruited from local communities through social media
posts, university website advertisements, and snowball sampling. Inclusion criteria required participants to be over 18
years old, hold a valid driver’s licence, and be able to attend a 2-hour study session. Exclusion criteria included medical
conditions affecting driving, history of epilepsy or motion sickness, pre-existing neck or back injuries, migraine history,
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Fig. 2. Areas of Interest: 1) �Centre Screen�, 2) �Le� Screen�, 3) �Right Screen�, 4) �Navigation�, 5) �Rear Mirror�, 6) �Le� Mirror�, 7)
�Right Mirror�, 8) �Centre Console�, 9) �Instrument Panel�, and �Unknown�.

pregnancy, and COVID-19 risk factors. All participants were screened for these criteria before being included in the

study.

2.1.3 Study Design.The study employed a within-subject design in which all participants underwent three drives in

an SAE Level 3 AV [29] simulator. Each drive, which was counterbalanced across the scenarios, included a planned

TOR when exiting the highway on the same route and one of three counter-balanced NDRT engagement conditions:

watching a video on a mobile phone, watching a video on a head-up display, and a baseline condition with no video.

Drivers were allowed to position the mobile phone at any position they felt comfortable�even outside of their �eld

of view from the driving scene. The HUD condition simulated a head-up display by overlaying a 61.5% transparent

image (76cm x 43cm) onto the front projection screen (partially occluding the driving scene), positioned approximately

3.75 meters from the driver's eye. Figure 3 displays the mobile and HUD conditions. The rationale behind the HUD

implementation is based on the possibility for drivers to engage in NDRTs while keeping relative vigilance of the driving

environment. To mirror real-world driving scenarios, participants were given the freedom to select their preferred

TV show, encouraging voluntary and natural engagement with the content. The video began playing as soon as the

automation was engaged and remained displayed throughout the entire automated phase. Participants were told to

engage with the video as they normally would during an automated drive while remaining aware that they might need

to take over control at some point. No instruction was provided regarding how or when drivers should interact with

the NDRT. Therefore, drivers were free to mediate their attention split between the NDRT and the road environment at

their own discretion. Lastly, a planned TOR was issued towards the end of the driving route when the vehicle exited the

motorway.
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Fig. 3. NDRT display modes: (a) Mobile condition, showing participant watching video on their handheld device, and (b) HUD
condition, where the HUD to watch the video is projected with 61.75% transparency on the centre screen.

2.1.4 Experiment Procedure.Participants arrived at the simulator, and after a detailed introduction, they signed a

consent form. Participants were informed that their participation was voluntary, and the collected data would remain

anonymous and be reported in an aggregate manner only. They were introduced to the experiment procedure, including

the capabilities of the simulated AV, the NDRT, the TOR, and the "shadow" driving. �Shadow� driving refers to a

technique where participants manually replicate the car's longitudinal and lateral movements as presented by the

recorded videos. This involves physically manipulating the steering wheel and pedals in real-time as if they were

actually driving the car, even though they are not in control of the vehicle. The TOR was presented through both

auditory and visual alerts, requiring participants to take over control of the vehicle (i.e., shadow drive) when prompted.

Each participant also chose two episodes from their favourite TV show to watch during two of their automated drives,

which served as the NDRT. The selected TV shows varied across participants�as they were able to choose what they

liked. This approach aimed to ensure that the NDRTs were engaging and representative of the participants' typical

viewing preferences, thus providing a realistic level of cognitive engagement during the automated drives.

Following the preparation, all participants completed an approximately �ve-minute familiarisation drive in the

simulator. During this familiarisation drive, they experienced the process of automated driving, where they were

required to engage in the NDRT (watching the TV show). Participants also experienced the TOR event, which prompted

them to disengage from the NDRT and prepare to take over control of the vehicle. As the driving scenarios were

recorded videos, participants did not take over control of the vehicle but were instead asked to shadow drive. They

were advised to shadow drive until they were comfortable with the concept.

After agreeing to proceed with the study, participants took part in three distinct drives in a randomised and

counterbalanced order, each including a TOR event. The eye-tracking data collected and analysed in this study focused

on the automated driving period before the TOR event. As soon as the TOR event was initiated, participants were

directed to perform "shadow" driving for the remaining two minutes until the end of the scenario. This ensured that

participants maintained their attention on the road during the transition of control, even though they were not actually

controlling the vehicle. All participants were exposed to identical conditions, allowing for a direct comparison between

the di�erent scenarios [11, for further details, please see19]. Each drive was followed by a motion sickness questionnaire

to assess their suitability to continue the experiment.

Manuscript submitted to ACM



8 Pardo, et al.

The entire experiment, including interruptions to reset and brief breaks in between, took about 1 hour. After

completing the experiment, each participant received a $70 gift voucher as compensation for their participation. The

study was conducted in accordance with the national ethics code where the study took place and approved by the

university's ethics review board (approval number 1700000425).

2.2 Markov Chain Analysis

Our comprehensive analysis of driver gaze behaviour under three distinct conditions�Baseline, Mobile, and HUD�used

a multifaceted approach to examine how each interface a�ects attention management and gaze scanning strategies

during the automated drive. Prior to the analysis, the collected gaze data were �ltered and validated to ensure that

the �Unknown� AoI represented gaze �xations outside the prede�ned AoIs and did not include any missing data. The

primary method employed in this analysis was Markov Chain analysis, which was used to model and understand

drivers' gaze transitions between di�erent AoIs.

Markov Chain analysis is a mathematical method for modelling sequences of events where the probability of each

event depends only on the state of the previous event [26]. It involves a �nite set of possible states within a system and

the transitions between these states (see Figure 4). The likelihood of moving from one state to another is represented by

transition probabilities, typically organised in a matrix. Markov Chain analysis is used to analyse systems that transition

between discrete states over time, allowing for predictions of future states based on current conditions. The Markov

Chain transition probability is given in Equation (1).

Fig. 4. Three-state Markov Chain model with transition probabilities.

%¹- =¸ 1 = 9j- = = 8º = ?8 9 (1)

The Markov Chain analysis generated transition matrices (Equation (2)) for each participant, containing the prob-

abilities of transitions between AoIs. These matrices were used to compare the gaze transition probabilities across

conditions. By applying Markov Chain analysis to drivers' gaze transitions, we aimed to gain insights into their attention
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