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Exploring the Perceptions and Challenges of Social Robot Navigation: Two Case
Studies in Different Socio-Technical Contexts
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Fig. 1. Experiment with the MeseroBot robot at the office scenario in ESPOL University, Guayaquil, Ecuador.

Service robot applications such as waitering, require robots to move in social spaces while preserving people’s comfort, known as
social robot navigation (SRN). Prior work has proposed and evaluated several SRN methods mostly using quantitative measures,
focusing only on one type of scenario, using one robot, or taking place in one socio-technical context. Yet it is still unclear what
makes a moving service robot acceptable in a social environment. In this work, we present two case studies conducting real-life
experiments and qualitatively evaluating an SRN approach in two different socio-technical contexts (Ecuador and the UK) with two
different robots. Our findings highlight participant’s perceptions, experiences and emotional responses towards the acceptance of the
navigating robot’s capabilities and appearance in indoor social spaces. We discuss how socio-technical factors such as robot’s speed
and appearance along with the settings spatial constraints, can influence the acceptance and experience of SRN.
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CCS Concepts: • General and reference → Evaluation; • Human-centered computing → Empirical studies in collaborative
and social computing.

Additional Key Words and Phrases: Social Robot Navigation, Socio-Technical Differences, Robot Design
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1 Introduction

In social spaces (i.e., spaces shared with people) such as shopping malls, restaurants, hospitals, and museums, service
robots are being designed and developed to support leisure and work activities for various purposes [37], for example
as a waiter to assist customers [20] or as a museum tour guide [84]. For a service robot to fit and perform well in
social spaces, it is important to preserve human physical safety and display socially acceptable behaviours to avoid
making people feel uncomfortable [61]. One particular aspect that affects robot acceptance is how service robots move
around people [69, 94] and how well they adapt to human behaviours and practices, which may vary depending on the
socio-technical context of the experiments [52, 55, 90]. Recent work has highlighted the importance of understanding the
socio-technical perspectives of human-robot interactions [9, 12, 72], that influence people’s perceptions and acceptance
towards robots [55, 57, 82, 92], which are "highly context dependent" [10].

The problem of endowing robots with the capability of moving autonomously around people in a socially acceptable
manner is commonly referred to as Social Robot Navigation (SRN) [61, 87]. Several methods have been proposed
for SRN [31, 40, 86], mostly quantitatively benchmarked in simulation or evaluated by carrying out real-life experiments
that do not resemble realistic scenarios. In particular, Silva et al. [86, 87] proposed SRN frameworks which enable a robot
to move in a socially acceptable manner by aiming to preserve nearby people’s comfort. One of their frameworks [87]
not only outperformed other state-of-the-art approaches for SRN [19, 42, 91] in an extensive quantitative benchmark,
but also proved to be feasible in real-word trials. However, they did not include any qualitative analysis to demonstrate
people’s acceptance to their SRN approach [87]. While previous research has shown positive results regarding the
acceptance of the robot appearance and tested SRN methods in real-life experiments [48, 62], many of them focus
on one specific scenario, one particular type of robot or take place in a single socio-technical setting (e.g., mostly in
developed countries). Therefore, it is necessary to deploy and test SRN methods in more than one robot and in more
than one socio-technical setting to be able to adjust to the dynamic changes of real-life environments and match human
expectations and routines [90]. In this study we focus on the following research question: “How is the social acceptance

of SRN affected by different socio-technical factors and contexts?”

Considering that service robots are increasingly being utilised in several service research areas and applications
around the world [5, 14, 43, 77], we present two case studies with adults in the UK and Ecuador investigating the user
acceptance and experience with the deployment of the SRN approach proposed by [87]. Accounting for the current
access and implementation of robotic systems in each study setting, we defined two distinct indoor scenarios (office and
hallways) and made use of two local robots to further explore how the socio-technical settings and robot’s capabilities
influence people’s perceptions, and acceptability of robots using the SRN approach in real-life experiments. Our findings
uncover how the physical and socio-technical factors influenced the perception of robots’ navigation capabilities and
Manuscript submitted to ACM
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Exploring the Perceptions and Challenges of Social Robot Navigation 3

the experiences and acceptance of the implemented SRN approach in each study setting. Based on the findings, we
discuss how the robot’s capabilities in each socio-technical context can hinder or facilitate the social acceptance of SRN
and present design considerations (e.g., increasing the robot’s speed in Ecuador and moving the robot further away
from people in the UK) to enhance the user experience in SRN contexts.

2 Related Work

2.1 Evaluation of SRN Approaches

There are different ways to evaluate SRN approaches, these can be quantitative (e.g., using success rate metrics [37] or
distance between the robot and participants [91]) and qualitative, either in simulation or real-life experiments. However,
there is limited work qualitatively evaluating SRN approaches.

Bruckschen et al. [15] modified their previous robot navigation approach to include a cost function, which prioritises
navigation paths based on robot’s social distance compliance, visibility, orientation change and path efficiency [16].
Their modified robot navigation approach was tested in a user study with participants by using virtual reality and a
simulated environment. Their SRN approach was evaluated quantitatively by measuring proximity to the user and the
visibility of the robot. A limitation of their work is the lack of experiments with a real robot failing to demonstrate how
people perceive their approach in practice.

Shahrezaie et al. [83] carried out unstructured interviews to study human-robot interaction where participants
were asked about their experiences regarding personal space, robot navigation and recovery behaviours with robots
in a museum [83]. Based on the results from the interviews, the authors extended their previous Socially-Aware
Navigation (SAN) approach [34] by including some social behaviours (e.g., engaging behaviour to initiate an interaction).
Their enhanced SAN was tested in four different simulated scenarios in which the robot would show an engaging,
conservative, reserved or stationary behaviour. Despite showing positive results about their enhanced SRN functionality,
Shahrezaie et al. [83] did not test their approach in real-life settings.

Most SRN approaches like [16, 66, 83] are developed according to feedback obtained from interviews without
involving a real-life SRN experience with robots. Other user studies such as the ones in [74], carry out evaluations using
robot navigation simulations or recorded media that fall short in understanding people’s perspectives and acceptance
of SRN. While some authors have conducted real-life experiments [62], they often lack a comprehensive understanding
of human-robot interactions through a qualitative analysis of participants’ experiences and perceptions. In addition,
Kayukawa et al. [48] investigated the acceptance of robot navigation for people with visual impairments in public
buildings. The authors used interviews with facility managers and focus groups with legally blind participants and
uncovered privacy and visibility concerns with robot appearance. Despite their work is remarkable for enhancing robot
guidance for people with visual impairments (PVI), their study is focused on a very specific socio-technical context
and revolves around the robot’s instead of the surrounding people. Similarly, Mavrogiannis et al. [60] carried out
several experiments in which social agents moved and interacted between surrounding easel pads while a telepresence
robot moved between the easel pads. For these experiments, the telepresence robot moved using an approach called
Social Momentum (SM). After each trial, their participants were asked to fill a Likert-scale questionnaire about their
impressions of the interaction with the robot and one open question regarding the experience of moving and interacting
around the robot. The information obtained from the only open question was thematically analysed to obtain insights
about the robot’s navigation, behaviour, appearance and expressed human emotions. However, they did not consider
conducting an in-depth qualitative study which could have provided more in-depth insights on participant’s perceptions,
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challenges and experiences. Although they had a high number of experiments (35), they focused on one scenario
(factory setting), with one type of robot (telepresence robot) and in one socio-technical context in USA [60].

2.2 Socio-technical Considerations and Social Robot Acceptance

There is a need to further understand how social robots are introduced and integrated into the broader socio-technical
context [72] to uncover the barriers and facilitators for their acceptance, and impact in the environments they are
deployed [64, 89]. Here, one major consideration to take into account is proxemics, which refers to the spatial distance
that each individual maintains in social and interpersonal situations [78]. Human proxemics towards robots have great
influence on the social acceptance of the robot and the used SRN approach.

There are few studies understanding the effect of culture on human-robot proxemics, which indirectly affects SRN
[28, 47, 85]. For example, Joosse et al. [47] conducted a robot proximity online survey that was distributed in three
different cultural regions: China, Argentina, and the USA. The survey asked about the appropriate position of a robot in
proximity when approaching a woman, a man, and a child that were having a conversation, their results showed how
Chinese and Argentinian participants were more comfortable with a closer robot approach than USA participants.

Another important consideration is the robot’s anthropomorphic appearance and how it influences robot acceptance
especially by people with practical experience with similar technology [39]. Anthropomorphism is the tendency of
attributing human characteristics, behaviours, and feelings to non-human entities such as robots [27]. There is a
tendency to design robots with human-like features to enhance human-robot interaction [30]. Anthropomorphism
also affects the user’s trust in the robot and user’s compliance towards robot’s feedback. Natarajan and Gombolay
[65] conducted a user study using four different robots with different levels of anthropomorphism to give feedback
to participants, and found that the Pepper robot [88] (a human-like robot) would generate more trust than a robotic
arm such as Sawyer robot [80]. Similar results were obtained by Chowdhury et al. [21], who conducted a user study
in which participants programmed and moved a Franka Panda robot [79] and only 5 out of 22 participants showed
compassion due to the robot’s anthropomorphism. However, increased levels of human-likeness can also evoke strongly
negative responses (e.g., revulsion) according to the “uncanny valley” theory by Mori [63]. In fact, the appearance of a
robot is perceived differently according to the specific socio-technical context and application. For example, in search
and rescue tasks, users prefer machine-like robots over human-like robots [8], and in hospitals, machine-like mobile
robots are perceived in different ways (e.g., an alien, a worker, a machine, a work partner) by different staff groups [56].

Furthermore, user’s beliefs, gendered assumptions, expectations and norms also influence the acceptance and potential
use of social robots [23, 90, 92]. For example social norms for navigation such as passing on the right, keeping a safe
velocity, not invading people’s personal space are important to consider in SRN [45]. Mismatched human expectations
of the robots (e.g., plug-and-play solution) [90] and the existing constraints of the physical environment (e.g., high
traffic, narrow and/or cluttered hallways) can negatively influence people’s perception of mobile robots [64]. Thus, it is
important to take into account the physical, social and material arrangements of each setting as these are crucial in
SRN to detect and correct potentially harmful outcomes (e.g., high intrusion in people’s personal space) and mitigate
unwanted bias and discrimination during navigation [12, 45]. However, there is limited research directly deploying and
evaluating SRN methods in different socio-technical contexts to further understand the factors that can facilitate or
hinder the implementation, use and acceptability of SRN.
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Exploring the Perceptions and Challenges of Social Robot Navigation 5

3 Experimental Setup and Case Studies

To further understand the socio-technical factors that affect the acceptance of SRN to inform the design of socially
acceptable robots and robot navigation systems, we carried out two case studies investigating people’s perceptions
and experiences using controlled in-the-wild (CITW) experiments [22] where the same SRN approach/algorithm was
deployed in different robots at two different socio-technical contexts: one in Ecuador and one in the UK. An exploratory
case studymethodology [97] was chosen as it emphasises the qualitative understanding of people’s perceptions, opinions,
and experiences in real-life settings [71, 97] and it has been commonly used for evaluation in HCI research [49, 51, 68].
We were interested in understanding the relevant socio-technical factors that facilitate or hinder the introduction and
acceptability of SRN in different social contexts by taking advantage of controlled in-the-wild methodologies as a first
step towards the subsequent field evaluation of the robots in real life settings (in-the-wild studies) [22]. As robots are
highly context dependent [10, 45], we will describe the details of each case study in the following sections, including
the robots, participants, and methods used. In both cases, we used two different indoor scenarios in shared spaces
(office, hallway) in which common interactions are likely to occur between static/moving humans and robots.

We recruited participants based on a convenience sampling strategy [3] by deliberately inviting participants around
the local research settings who were willing to volunteer at the time of the experiments. These participants had no
relationship with our project and were asked to share their experiences, opinions, preferences, and suggestions to
improve the acceptance of the SRN approach used. Each complete trial of an experiment, i.e., including experiment
explanation, robot moving around participants according to one scenario, and the follow-up interview or focus group,
lasted around 30 minutes on average1. Table 1 shows a summary of the participants per experiment, scenario, and
location. In some cases, more than one experiment was conducted with the same participants. For example, in the UK,
we conducted three experiments (one for the office scenario and two for the hallway scenario) with five participants
and conducted a single focus group. In such cases, the participants rotated between being an observer to interacting
with the robot for each experiment. We obtained ethical approval from an ethics committee in the UK for conducting
the experiments as there was no local ethics committee in place at the Ecuadorian institution. Participants received
a participant information sheet with the explanation of the study and signed an informed consent. The study was
conducted in English in the UK and in Spanish in Ecuador.

3.1 SRN Approach Selection and Implementation

Several SRN approaches have been proposed. To choose the most appropriate SRN approach for our user studies, we
carried a simulation benchmarking in which we tested six different state-of-the-art approaches such as the Social
Force Model (SFM) [42], Proactive Social Motion Model (PSMM) [91], socially aware collision avoidance with deep
reinforcement learning (SA-CADRL) [19] and two from Silva et al., [86] and [87]. For reactive SRN approaches such as
SFM and PSMM, we tuned their parameters heuristically by test and error. One hundred trials were run for each of the
tested SRN approach. For each trial, one of four different simulation scenarios was randomly chosen in which the robot
had to navigate from a random start position to a random goal position using that SRN approach.

To evaluate these SRN approaches, we used the most common SRN metrics such as the success rate of the robot
to reach the destination, the amount of collisions with the surrounding obstacles and social agents, the appropriate
distance between the robot and social agents, and the time required to arrive at the destination. As a result of this
benchmarking, it was found that the most appropriate approach was the one proposed by Silva et al. [87]2. It was the
1To get an overview of the simulation trials and the experiments, check the following video: https://youtu.be/dFreXVsIJmc.
2Source code of the implemented SRN framework is available at: https://github.com/CardiffUniversityComputationalRobotics/social-multi-fed-nav-stack
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Table 1. An overview of participants. Female (f), male (m), E (Ecuador), U (UK), Office (O), Hallway (H), Interview (I), Focus Group
(FG) (e.g., UOFG-5 = UK Office scenario Focus Group # 5).

Location Scenarios Participants Study method # of experiments
Observer Interacting Observer and

Interacting
ESPOL University

Guayaquil
Ecuador

Case Study 1

Office 9
(7 m, 2 f)

12
(8 m, 4 f) - 21 I (EO1-21) 6

Hallway 5
(1 m, 4 f)

5
(2 m, 3 f) - 10 I (EH1-10) 5

Cardiff University (CU)
Cardiff
UK

Case Study 2

Office - 10
(7 m, 3 f)

2
(2 male)

1 I (UOI-1)
5 FG (UOFG1-5) 7

Hallway - 2
(2 male)

4
(2 m, 2 f)

2 I (UHI1-2)
1 FG (UHFG-1) 4

Both scenarios - - 5
(2 m, 3 f) 1 FG (UOHFG-1)

3
(1 office

2 hallway)

most balanced overall, while maintaining a low amount of collisions on the successful cases, and a low average time to
arrive to the destination compared to the other SRN approaches such as PSMM and SA-CADRL that had issues (e.g.,
robot getting stuck) with surrounding objects and social agents.

A differential wheeled robot was used in each research setting: the MeseroBot robot (see Figure 2) in Ecuador, and the
TIAGo robot [70] (see Figure 5) in the UK. Both robots were set up to detect people and move autonomously by using
the selected SRN framework [87]. The framework, including sensors’ drivers and interfaces, was implemented using
Robot Operating System (ROS). To detect social agents in the real environment, laser sensors were used along with a
people tracker [53]. To detect obstacles (e.g., desks and chairs), both robot used an RGB-D camera to build a 3D map
using Octomap [44]. Practical constraints had to be considered as both robots did not have a CPU capable of running
the whole semi-autonomous navigation system and sensors. We decided to adapt an external laptop to the robots to
retrieve the pointcloud from the RGB-D camera and run the selected navigation framework.

3.2 Case Study 1: SRN in Ecuador

Case study 1 was conducted in collaboration with Ecuadorian researchers at ESPOL University in Guayaquil (Ecuador)
who design and create their own social robots as that helps reducing development costs while adapting their hardware
capabilities to support social interactions [33]. Something important to have in mind is that the access to social robots
on the market in Ecuador is quite limited, as they are not affordable for companies or universities [33]. Additionally, the
case study was conducted at ESPOL University in Guayaquil, Ecuador.

3.2.1 The MeseroBot robot. The MeseroBot is in the process of being deployed to support catering applications in
environments such as restaurants and social events, where the robot must resemble and work as a mobile waiter. To
do so, the MeseroBot has a tray on top to carry objects. To navigate and perceive the surroundings, the MeseroBot is
equipped with a RPLIDAR-A1 laser range sensor (360 degree) and an Intel RealSense D435i RGB-D camera. At our
Manuscript submitted to ACM
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Exploring the Perceptions and Challenges of Social Robot Navigation 7

Fig. 2. MeseroBot robot and the office scenario for Case Study 1

Fig. 3. Hallway scenario for Case Study 1

partner institution, researchers have been implementing the MeseroBot since 2020 and due to its sensor capabilities
was able to deploy the selected SRN framework. The MeseroBot’s measures are 1.0𝑥0.45 meter height and diameter.

3.2.2 Participants. At ESPOL, we carried out 11 experiments using both scenarios (office and hallway), combined
with 31 semi-structured interviews (25 students, 4 researchers, 2 visiting professionals) to capture their experiences,
perceptions and suggestions after interacting with the navigating MeseroBot. Eighteen participants self-identified
themselves as men and 13 as female, and 12 participants expressed to have no previous experience with robots.
Experiments and interviews took place in a research centre at ESPOL between January and February 2023.

3.2.3 Office Scenario: This scenario includes a number of desks and chairs, along with four participants who are
either making or getting a cup of coffee or chatting with other participants. For this scenario at ESPOL, we had a larger
space in an office environment. While two participants (1 and 4) were asked to move as shown by the dashed arrows in
Figure 2, the other two participants (2 and 3) were asked to act as if they were standing performing a more static activity,
e.g., reading a paper. As illustrated by Figure 2, participant 1 would first pass in front of the robot and walk towards
the café area to grab a cup, before meeting with participant 4 in a specified meeting point and start chatting while the
robot moves from a start to a destination position. This scenario was designed to evaluate how the participants would
perceive the movement of the robot when passing in front of them and when two participants interact stepping in front
of the robot’s movement trajectory.
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3.2.4 Hallway Scenario: This scenario resembled a passing by situation in which two people walk and pass next to
each other. For this scenario, as illustrated in Figure 3, the robot moves from a start position to a destination straight in
front of the robot. Meanwhile, participant 1 moves from the robot’s destination to the start position. Because of the
available space, we included participant 2, which remains static in the scenario. This scenario was designed to evaluate
how the participants would perceive the movement of the robot when passing by in opposite directions.

3.2.5 Procedure: At ESPOL, apart from the invited participants there were also some external people who worked in
the surrounding offices that passed around during the experiments. These external people were not included on purpose.
However, the presence of surrounding people in the experiments aligns with previous research, which suggested that
having people standing close to each other in common social spaces can reduce the potential anxiety that a robot might
cause [46]. To capture the desired interaction, participants were asked to adjust their walking speed (e.g., to move
slower) and behave as they would commonly do in a normal day while following the moving directions and interactions
as shown in Figure 2 and Figure 3. Participants received instructions as a script similarly to the experiments carried in
[6]. After signing the consent form, the experiment started with the robot moving from a start position to a destination.
Despite people feeling comfortable with robots moving at speeds between 0.254𝑚/𝑠 and 0.381𝑚/𝑠 [17], the speed of the
robot was adjusted to 0.22𝑚/𝑠 due to the maximum speed of MeseroBot. The robot took two and a half minutes in
average to reach the destination in both scenarios.

3.2.6 Qualitative Study of SRN. After each experiment, we conducted semi-structured interviews looking at the
perception and social acceptability of the navigating MeseroBot. We asked: a) How would you describe your experience

around the robot?, b) How did you perceive the movement of the robot?, c) In terms of comfort and safety, how did you feel

around the robot?, d) How did you feel that the robot and its movement affected your personal space?, e)What potential

values do you find in the robot?, f) What would you change about the robot to make it more trustable while moving

autonomously around you?.

3.3 Case Study 2: SRN in the UK

In the UK, the case study was conducted at Cardiff University (CU) in Cardiff, Wales, UK.

3.3.1 The TIAGo robot. The TIAGo is a general service robot for indoor environments, and it has been envisioned
for a variety of applications, e.g., sorting bookshelves and transporting objects [70]. The TIAGo uses built-in sensors,
such as a SICK laser range-finder (180 degree range) and an Orbbec Astra S RGB-D camera, to create a representation
of the surrounding environment. The TIAGo’s measures are 1.1𝑥0.54 meter height and diameter.

3.3.2 Participants. At CU, we carried out 14 experiments for both scenarios (office and hallway), combined with 3
interviews (2 researchers and 1 student) and 7 focus groups (19 students and 1 researcher) to capture their experiences,
perceptions and suggestions after interacting with the TIAGo robot. Thirteen participants self-identified themselves as
male and 8 as female, and 4 participants expressed it was their first time interacting with a nearby robot. Experiments,
interviews and focus groups took place at location CU in February 2023.

3.3.3 Office Scenario: At CU, we made some adjustments considering the practical constraints, e.g., having a smaller
space available as seen in Figure 4. Experiments were conducted with 2 to 3 participants. When a third participant was
involved, this participant was asked to stay seated on a chair while observing the experiment. Participant 1 walks and
Manuscript submitted to ACM
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Fig. 4. Office scenario for Case Study 2.

takes some documents from a desk, meanwhile, participant 2 moves and meets participant 1 at a meeting point where
they start chatting. As the participants move, the robot moves from the start to the destination position.

3.3.4 Hallway Scenario: At CU, experiments involved 1 or 2 participants according to the availability of participants,
walking across the hallway in opposite direction to the robot as illustrated by Figure 5. When two participants were
involved, they were asked to walk together chatting as they knew each other beforehand. Similarly, the robot moves
from the start to the destination position.

3.3.5 Procedure: At CU only the participants were present during the experiments. Similar to case study 1, participants
in case study 2 were asked to adjust their walking speed and act as they would commonly do in a normal day while
following the directions as shown in Figure 4 and Figure 5. Same instructions were provided similarly to the experiments
carried in [6]. After signing the consent, the experiment started with the robot moving from the start location to a final
destination, and the participants also started moving as described in each scenario. The robot speed was also adjusted
to 0.22𝑚/𝑠 .

3.3.6 Qualitative Study of SRN. Practical constraints had to be considered due to the short time availability of
participants and after the initial interviews we opted for using focus groups. We conducted 3 interviews and 7 focus
groups. The focus groups helped exploring participants’ perspectives and how they share and compare experiences
with other participants after the experiments. We used the same open-ended questions from case study 1 to guide the
interviews and focus group discussions.

3.4 Post-ExperimentsQualitative Data Analysis

As user experiences are by nature subjective [35], we took a constructivist stance [96] and follow a reflexive approach
to analysis rather than following other positivist approaches that rely on quantification of patterns [13]. Qualitative
data was thematically analysed using the online collaborative tool Taguette [75], following the step-by-step guide from
Maguire et al. [58] to gain insights into the participant’s subjective experiences and opinions during the experiments.
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Fig. 5. Hallway scenario for Case Study 2.

Initially, the interview recordings were transcribed and analysed by three researchers (2 of which are native Spanish
speakers). Data from ESPOL was primarily analysed in Spanish and translated to English for reporting in section
section 4. Data from CU was analysed in English. The researchers read the transcripts multiple times to familiarise
themselves with the empirical material, and coded all the transcripts using an inductive approach. Researchers discussed
the codes with a fourth researcher to avoid losing information and misunderstandings. Then, Miro3 was used to
collaboratively group codes by themes and sub-themes in a visual form. The codes were grouped separately for each
scenario and case study, re-defining and removing themes and sub-themes until the grouping converged into a consensus.
It took five iterations within a month to complete the analysis and was finalised while writing this paper.

4 Findings

4.1 User Perceptions, Experiences, and Emotional Responses on Robot’s Social Navigation

The case studies revealed how user’s perceptions and experiences are highly context dependent. In our case study 1,
participants’ perceptions and emotional responses were mainly triggered by the navigation capabilities of MeseroBot.
Most participants reported positive experiences around the navigating robot in both scenarios and in a few cases reported
negative opinions. For example, participants expressed positive emotions as they felt calm around the navigating robot
and “. . . very comfortable, in no moment I felt it [MeseroBot] was about to crash with me . . . ” (EH-2). Nonetheless, some
participants reported negative experiences as they felt uncomfortable or unsafe. One participant in specific felt “. . . a bit
nervous because I had never been near a robot.” (EH-7).

In case study 2, more than half of participants expressed positive experiences with the navigating robot. Several
participants described the experience as exciting and enjoyable. For example, a participant mentioned “I was quite excited
to see what would happen, and I was looking forward to seeing what it [TIAGo] would do.” (UOFG-1). However, some
participants also described the experience as scary and uncomfortable. In particular, few of the participants without prior
experience with robots had negative responses such as fear. In one of the focus group, a participant commented “. . . I

have never really interacted with robots like this before, so I do not know what to expect, it kinda freaks me out.” (UHFG-1).
Overall, participants’ perceptions and emotional responses were triggered by both the navigation capabilities and the
physical appearance of the TIAGo’s robot.

4.1.1 Robot movement capabilities: Perceptions of robot speed control, navigation trajectory, safety, and potential risks.

MeseroBot robot. In our case study 1, participants frequently commented on the robot’s navigation capabilities,
while expressing that MeseroBot was aware of the room environment and participant’s movement to avoid potential
3https://miro.com/index/
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collisions. For example, a participant stated “The robot was like stealthy, like he realised that I was walking, and he was

paying attention . . . ” (EH-10). In fact, many participants perceived the navigation trajectory as safe and pleasant as a
participant mentioned “. . . the robot was slow and gives the advantage of being more or less safe . . . it wouldn’t hurt a person

even if it crashed.” (EO-15) and another participant stated “. . . because it is pleasant that it moves slow, with control, that

one feels like it [the robot] is not going over an obstacle . . . ” (EH-8). The low speed was associated with safe navigation
while safety concerns arise at higher speed since “. . . if the robot had a higher speed or something like that, or if someone

was not paying attention, basically it could have crashed . . . ” (EO-18). Additionally, one of the participants mentioned
that “. . . it felt like in the future it would be comfortable to live together with a robot.” (EH-5), meaning the robot could
fulfil tasks in social spaces where daily interactions with humans occur. Still, some participants from both scenarios
categorised their experience as ‘normal’, as the robot was barely noticed. A participant mentioned “. . . I was talking with

my friend and like I didn’t feel the robot, I forgot the robot was going through there . . . ” (EO-16).
Although, the low navigating speed was perceived as safe for many participants, some negative responses describe

the navigating robot as too slow and not agile. Others suggested that it can create safety risks to their personal space
since “it [MeseroBot] moves slow, therefore . . . it is not like a person walking normally.” (EO-16). While some participants
found the navigating robot to be precise with safe movements, others highlighted “. . .when the robot start moving, it

wobbles a bit, but it moves well.” (EO-20). In addition, other participants instead had a negative experience because of
how the robot navigated while stopping abruptly as “. . . at some moments the robot took some impulses . . . ” (EO-1). As a
consequence, a few participants noticed that the robot wobbled and expressed their concern of the robot falling while
starting movement, and that it was indecisive regarding the navigation trajectory, “. . . if the robot had dodged me and

gone its own way, maybe I would not have worried about my personal space, but the robot was undecided, I did not know if

it would maybe invade my personal space . . . ” (EH-8). Moreover, because of the wobble, a participant felt ‘. . . scared that
the laptop could fall off.” (EH-8). In particular, two participants commented on the robot navigation trajectory, thinking
it was predefined and therefore they felt comfortable as they perceived low risk of a potential collision. However, another
participant felt confused as, “. . . I did not know what was the trajectory of the robot . . . thought it could crash with me . . . ”

(EO-17) increasing the perceived risk of collision.

TIAGo robot. Regarding the navigation trajectory in case study 2, participants gave positive comments such as
“. . . yeah, this bit was really impressive, how it was moving up here, around the table . . . ” (UOFG-5), highlighting how the
robot adjusted its navigation trajectory to avoid obstacles. Similarly, participants also reported feeling safe for how
the navigating robot “was good at avoiding us [the participants]” (UOFG-2). Likewise, participants from (UHI-1) and
(UOHFG-1) perceived the risk of potential collisions as low, as they felt the robot was safe due to its slow navigation

speed, “Yeah, I think the slow pace helped that [feeling comfortable]” (UHI-1).
Participants had mixed opinions in both scenarios on the level of navigation speed. While for some participants

that perceived the robot navigation as slow it was associated with safe navigation as “I didn’t feel the danger at any
point.”, other participants would have preferred otherwise, “I wish it was faster.” (UOHFG-1). One participant noticed
that the robot’s movement and speed did not adjust to the walking speed of the participants since “When you walk

past the person, you both walking much faster than that and you kind of judging each other’s [speed], aligning yourself

up with each other, kinda thing, and you stop going when if you are about to hit someone . . . ” (UOFG-4). Still, some
participants also commented on how the low speed enabled them to become aware of the presence of the robot, and
change their orientation towards the robot if needed. For example, a participant stated “It is definitely a bit slow, but I
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Table 2. Summary of the major findings obtained from the interviews and Focus Groups for case studies 1 and 2.

Case Study 1
(31 participants)

Case Study 2
(23 participants)

SRN positive experiences

12 participants expressed it was
their first time experiencing
with robots.

4 participants expressed it was
their first time experiencing
with robots.

21 participants expressed
having a positive experience
by feeling “comfortable” and
“pleasant”.

13 participants expressed
having a positive experience
by feeling “safe” and
“comfortable”.

Perceived negative experiences
on the used SRN capabilities

Robot movement
Participants negatively criticised
the wobbling and doubtful
movement of MeseroBot.

Participants negatively criticised
the linear and doubtful movement
of TIAGo.

13 participants expressed
MeseroBot was slow.

8 participants expressed
TIAGo was slow.

Personal space
7 participants expressed
personal space was negatively
affected and caused discomfort.

9 participants expressed
personal space was negatively
affected and caused discomfort.

Robot appearance effect
on comfort

MeseroBot’s appearance did not
significantly affect participant’s
comfort.

TIAGo’s human features positively
affected some participants’
comfort but also very negatively
to others who called it “creepy”.

Suggestions to enhance
SRN experience

Participants focused on improving
MeseroBot’s appearance and
avoiding the wobble movement.

Participants focused on respecting
the personal space and the linear
movements of the robot.

guess that gives us an advantage, so that we know there is a robot and then if there is something we can move away from its

path.” (UOFG-3).
Yet, there were some experiments in which negative experiences arose. In one experiment, the robot moved in front

of a participant and stopped, and this participant commented on the robot’s inability to detect people from far away as
“He [TIAGo] doesn’t know until he kinda gets to the point where I am and then you move like at the last moment.” (UOFG-4).
A participant also commented about the perceived indecision of the robot when it paused as “. . . it [TIAGo] was looking
in different ways and then found out the best way . . . ” (UOFG-2). Comparably, participants noticed that the robot
turning was not smooth enough as “. . . it is very much like turn, drive one direction, turn, drive, instead of kinda of curved

path.” (UOFG-4). In particular, for the hallway scenario, a participant expressed safety concerns in relation to the
perceived competence of the robot (or lack thereof), “because of these abrupt movements, I could not really predict, what

he was doing.” (UHFG-1) and another participant said the robot “. . .was less predictable with other people being very close

to it, so it couldn’t really say what he will do next time.” (UHFG-2). Some participants still considered the movement “. . . a
bit weird, how it was walking up to me, even though I was still there . . . then it was kind of approaching me a bit weird in a

way.” (UOFG-5).

4.1.2 Personal space: Perceptions of robot distance, associated experiences, and perceived risks.
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MeseroBot robot. In case study 1, most participants felt comfortable with the distance taken by MeseroBot. A
participant mentioned “to me the robot didn’t transmit any discomfort, the robot maintained a safe distance . . . ” (EO-
14), as a consequence of the robot’s capabilities to navigate while avoiding collisions and respecting the participants’
personal space. Indeed, many participants did not perceive the navigating robot as creating a safety risk as a participant
commented “. . . I did not feel the robot was a threat or that it would hit me, I felt calm just that.” (EO-21). Despite having
a positive experience, e.g., “it was cool, it was good, it was interesting” (EO-22), few participants also felt their personal
space was affected negatively “a bit since when the robot passed it delayed a bit to dodge . . . ” (EO-22) and “in this case

yes, because I had to go back for the robot to pass.” (EO-21).

TIAGo robot. In case study 2, almost half of the participants had a comfortable experience, because the navigating
robot kept distance and did not crash into any participant. One participant mentioned “I never felt like it was bothering

me or something. It was just moving at one pace.” (UOFG-1). Although “it [TIAGo] was getting too close sometimes, it

never got into our [personal] space” (UHI-1) and “it was quite, it didn’t really get too close to us . . . ” (UHFG-1). Still,
some participants expressed that although it was not the robot intention to affect their personal space, “it [TIAGo] came

a bit closer than a normal person would” (UOFG-4) and also “It [TIAGo] moved quite tightly around me . . . ” (UOHFG-1),
making them uncomfortable, scared and feel “. . . the fear of knocking it [TIAGo and the laptop] over.” (UOHFG-1). In
particular, participants reported a scary experience when the navigating robot was out of sight and suddenly appeared,
as a participant stated “. . . I had an instinct to check what was behind me, at one point it was behind me and it was a bit

scary.” (UOFG-1). Another participant (UOI-1) stated that people would be scared while not having an understanding
of a safe distance.

4.1.3 Robot physical characteristics: Perceptions of size, noise levels and appearance.

MeseroBot robot. In case study 1, participants felt comfortable not only because of the robot’s navigation speed, but
also because of its size, and noise level as one participant stated “very comfortable to be honest, the robot was not spacious,

it is not significantly large to present a nuisance when being close, nor is it noisy, nor is it very fast.” (EO-8). Another
participant also mentioned that “[MeseroBot] did not cause any insecurity involving its aspect or materials.” (EO-16). In
that sense, MeseroBot’s height and width contributed to its perceived trust and social acceptance in the office scenario.
We also noticed how all participants perceived it as a male-gendered robot due to its name and appearance.

TIAGo robot. In case study 2, TIAGo’s appearance affected the perceived trust of the navigating robot, given that several
participants referred to the robot as polite with human characteristics and a male name. A participant stated “I think it is
quite trustable as it is, it is not like faceless . . . ” (UOFG-1) and others felt “he [TIAGo] looks quite friendly.” (UOHFG-1).
However, few participants expressed some concerns due to its humanoid appearance as either the robot “gotta [have
a] full . . . face on it, or make no face at all, it has got like a creepy face at the moment.” (UOFG-4). Another participant
expressed negatively that TIAGo has “In my opinion, it has a lot of stuff to it, if you see what I mean, a lot of shapes, a lot

of different textures, colours, patterns, I think if it was more like uniform, like a maybe like an egg shape, it grabs less of

your attention . . . So if it grabs less of your attention, you kinda of notice it less. If you don’t really want to notice it, right

. . . it is not the centre of attention, it is not intended to be the centre of attention . . . ” (UHFG-2).

4.2 Suggestions to Enhance the User Experience of Navigating Robots

MeseroBot robot. In case study 1, participants suggested adjusting the robot’s height, weight and speed to make the
robot safer and more trustable. Avoiding navigating robots abrupt behaviours (e.g., sudden stops or changes in direction)
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could be an improvement as a participant mentioned “Just that it [navigating robot] does not wobble too much because

maybe it could flip itself . . . ” (EO-4). Other participants suggested that the robot should adapt and adjust its movement
according to the people’s speed. A participant commented, “. . . I saw it was too slow, then I think when someone is going

to interact with the robot, it should move with our rhythm.” (EO-17).
Most participants suggested the trust could be improved by having a more human-like appearance as “Maybe the

robot could be like a person, that it looks like a person . . . ” (EH-10) and by “covering it [MeseroBot] with something to

cover the cables . . . ” (EH-5). Also to enhance its visual interaction, e.g., by adding lights to be aware of its presence and
proximity “for people to pay more visual attention to the robot . . . ” (EH-2). In terms of the structure of the robot, this
same participant commented that the robot could be more trustable if it was more visible, e.g., using lights to attract
attention: “Maybe to add a bit more [to increase] attention to the robot, for people to pay more visual attention to the robot,

like it can be seen more and that people are more aware that it is near.” (EH-2).

TIAGo robot. In case study 2, participants provided suggestions to enhance the robot’s physical structure to make
it more trustable, e.g., by adding a rubber stopper around its bottom, to avoid unintended consequences such as
having “some kind of spillage” (UOFG-3). Some participants suggested enhancing the multimodal interaction of the
navigating robot to make people aware of its proximity. For example, a participant suggested adding “sound, so we

would know it is there. Either saying that the robot is here or just to add beeping.” (UOFG-2). However, a participant
mentioned the robot should be as simple as possible not to attract too much attention, “just like for utility purposes, I
would make it less colourful, multi-shaped, to be honest.” (UHFG-2).

From the Focus Group (COHFG-1) in which mixed experiments were carried, there were not many comments about
suggestions to improve the robot, in general they just expressed that they desire the robot to go faster and be more
agile: “. . . it probably would be better if it was a bit more faster and like agile. It’s kind of hard to get a good balance of that.”

5 Discussion

For mobile robots to be acceptable in shared social environments, they should navigate in a reliable and appropriate
manner [83]. In our case studies, we observed that personal space and spatial arrangements (distance and proximity),
social awareness, physical appearance (aesthetics and size) and even the robot’s movement (speed and movement
intentions) played an important role influencing the perceptions and experience of the participants and the social
acceptance of the SRN approach in each socio-technical context. All of these socio-technical aspects led to positive and
negative responses as several participants, from both research settings and scenarios, felt mostly safe, and comfortable

but at times also strange or nervous. Social acceptance varies according to each socio-technical context where the robots
are introduced including the readiness for use and the actual resources available in early stages of robot development.
In this section we discuss the different socio-technical factors that are important to consider when investigating the
social acceptance of SRN to inform the design of SRN systems.

5.1 Robot appearance effect on social acceptance

In the case of TIAGo, in spite of its friendly appearance which could have led to trustable experiences as suggested
by Walters et al. [94] and evidenced by Natarajan and Gombolay [65], two participants in case study 2 found TIAGo’s
facial aesthetics features (not having a complete humanoid face) as creepy, similar to previous work [93]. Aligned with
Antonioni et al. [4], we found that in general TIAGo’s medium-level of anthropomorphism (robotic arm and face) was
well received by most participants in contrast to previous research on the uncanny valley effects of robot’s appearance
Manuscript submitted to ACM
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[98] which hypothesises that a person would experience revulsion towards a robot that possesses behaviours and
appearances too similar to a human [63]. Regardless of TIAGo’s friendly aesthetics, participants suggested that as long
as the robot would have the minimum capabilities for the intended application in each socio-technical context of use
(e.g., office scenario), their expectations would be met, otherwise it would lead to negative responses [32]. Thus, having
a robot with an incomplete human-like face at CU did not significantly influence the social acceptance of the navigating
robot.

In case study 1, participants did not perceive that the appearance of MeseroBot (i.e., not anthropomorphic physical
appearance) greatly influenced the social acceptance of the navigating robot, even though many of the participants had
no previous experience with robots, but suggested that MeseroBot could be more trustable with a more human-like
appearance. Although Marroquin and Saravia [59] highlight that people from Latin American countries are not generally
supportive of robots, they also mentioned that people who are male, single, educated and democratic, have less negative
perceptions towards robots. At ESPOL, more than half of the participants were male and all of them belonged to an
educational institution where the level of readiness was high as many participants were curious and competent enough
to be involved in the experiments.

In addition, we observed how participants in both cases assign a male gender to both robots due to their names,
however, their influence in social acceptance was not self-evident and rather perceived as a superficial gender attribution
as participants value utility over appearance. The participants in our case studies were from Western countries (UK a
highly developed country and Ecuador an upper middle-income country) with easy access to Internet and Education.
Even though a few participants in CU have been previously exposed to robots, participants in CU also expressed
negative responses (e.g., uncomfortable, unsafe, etc.). This differs from previous research that has stated that the longer
people are exposed to robots the more positive attitudes people have toward robots [81]. One possible explanation, of
the low number of negative perceptions towards MeseroBot despite its lacking anthropomorphism could be due to the
novelty [67] of robotics in an emerging country like Ecuador, with little development on SRN and limited exposure to
social robotics [33]. Actually, when introducing new technology such as robots, a transition period is usually required
so that the robot is accepted correctly [73]. However, similar to the participants’ experiences from [60], in case study 1
many of the participants were curious to see how the robot would move and react around them, than scared from its
behaviour. This could have contributed to participants in ESPOL having a positive attitude (e.g., pleasant, comfortable)
and interest towards the robot and their own personal space, even without a human-like physical appearance while
having the expectations of the robot met. Indeed, it has been proved that machine-like appearance is preferred in
laboratory context [38], and at ESPOL, participants were aware that the location where the experiments were carried
was inside an academic institution which could have contributed to the positive reactions.

Our study suggests that, even though SRN research commonly focuses on how the robot moves around people and
preserves their psychological and physical safety [78], anthropomorphic characteristics may affect the social acceptance
of a moving robot according to each socio-technical context [27] and the expectations of users [11]. The effect on the
social acceptance of the navigating robot is highly dependent on the socio-technical context, as for example, Alzahrani
et al. [2] showed that Western countries tend to trust robots more than Eastern countries. However, more research is
needed to further understand people’s initial preconceptions, gender assignment, and expectations and explore how
these socio-technical factors influence people’s perceptions and experiences with mobile robots. Thus, there is a need
to better design tailored SRN approaches to provide meaningful human-robot interactions in shared-environments that
can adapt to the practicalities and expectations of each socio-technical context [90], which is crucial especially in early
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stages of development [24]. Indeed, it is challenging to discuss our work since, to the best of our knowledge, there is no
previous research exploring SRN in Global South socio-technical contexts.

5.2 Robot’s speed and movement behaviour effect on SRN

Another important feature was the robot’s speed, as we observed that, in general, participants from both case studies
felt safe due to the low speed. Considering that Shahrezaie et al. [83] and Althaus et al. [1] suggest the robot’s speed
should be adjusted based on the social setting and the distance to the surrounding people, we set it up lower than
previous recommended values [17, 52, 78] to ensure people’s comfort and adaptation to social norms for navigation
to maintain a safe velocity as suggested by Kirby [50] and Chowdhury et al. [21]. However, participants in both case
studies indicated that the moving speed could be faster while adjusting to the participant’s speed and the dynamics of
the socio-technical environment. A possible reason is that the contexts presented were office related, in which higher
velocities are expected than in other contexts such as healthcare places [36]. Particularly, speed perception could be
attributed not only to the spatial arrangement, but also to external environmental factors. For example, ESPOL being
located in a big city in terms of size and population, in which people may expect a high movement speed for the
robot [54]. Indeed, the used SRN approach does not make any consideration into the variation of robot’s speed and
therefore did not feel appropriate by our participants in some cases. Similarly, in [60] participants expressed the need
of adjusting their speed when they had the robot moving past them. In a recent study, Tornbjerg and Kanstrup [90]
present a case where “robots drove at a slow pace for safety reasons” resulting in staff becoming frustrated as robots
could not adapt to their walking speed.

A similar effect is observed towards the participants’ perception of safety according to their personal space. Aligned
to [28], participants in ESPOL were overall less sensitive to having negative connotations such as being scared when a
robot moves close. Even when the robot moved directly towards them or near them, participants in case study 1 reacted
to the movement of the robot by giving free space and having a positive experience despite their personal space being
affected negatively. This is related to testimonies seen in [60] where participants mentioned that although the robot
passed very close to their feet, it was just like when you move around a crowd. This can also be attributed to the spatial
features (e.g., space, proximity, distance) in each setting. For example, for the experiments in ESPOL, having much
bigger spaces for the scenarios in case study 1 than in case study 2, may have increased the confidence of participants
to evade the robot and move freely, influencing the social acceptance of the robot and its movement. Eriksen and
Bodenhagen [29] describe how a moving robot got stuck in narrow hallways, where staff got frustrated while waiting
for the robot to react. Indeed, high traffic and/or cluttered hallways in the trajectory of an autonomous delivery robot
can negatively impact the organisational workflow in particular settings (e.g., hospitals) as it gets in the way of more
important and crucial work [64]. In addition, most participants in case study 1 expressed that MeseroBot did not affect
their personal space and felt comfortable or normal even when the robot passed close to them. Furthermore, participants
in case study 2 that interacted in a much smaller space, showed several concerns about their personal space, e.g., whether
the robot gets too close or in some cases even felt creepy. Nevertheless, non-maleficence is also evident [45], since some
participants from both locations expressed the understanding that the intention of the robot was not to cause harm or
get close to the participant.

In our case study 1, participant’s reactions to the robot wobbling while navigating, and its unnatural movement,
were more prominent due to the MeseroBot’s physical structure not being as strong as the TIAGo’s physical structure.
The MeseroBot wobbles due to the inertia while decelerating, and the harsh movement was a known characteristic of
the used SRN approach [87]. The wobbly movement of MeseroBot and harsh movements in both robots, negatively
Manuscript submitted to ACM
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affected the legibility, which refers to the capability of the robot to transmit its movement intentions to surrounding
people [26]. Aligned with [90], harsh movements caused annoyance and frustration to our participants as especially in
case 1 participants thought the robot moved following a predefined trajectory since many participants did not have
previous experiences with navigating robots.

Participants in case study 2 highlighted the importance of having the robot in their line-of-sight to predict its
navigation intentions, rather than not knowing the robot’s position, which was scary for some CU participants. Our
findings align with Bungert et al. [16] and Charalampous et al. [18] that have highlighted the importance of human
visibility on the moving robot to maintain people’s comfort. While case study 2 participants wanted the robot to have a
more explicit interaction (e.g., using speech to express its proximity to surrounding people), case study 2 participants
mentioned their desire for a more implicit type of communication (e.g., use of lights around the robot). This aligns with
previous research that has shown how the use of speech and lights can be used also improve the communication of
intents [21, 26]. For example, Hall [41] shows how German participants have less preference for implicit communication
and prefer a robot that speaks and makes people aware of its presence [74, 76]. However, it is important to point out
that unexpected voice may put participants in uncomfortable situations [28]. Also, previous research such as Baraka
and Veloso [7] has presented that using animated lights to express the presence of a moving robot and its movement
intentions can enable better collaboration between robots and humans. Our study suggests that SRN systems need to
be able to identify nearby social agents and make them aware of the navigating robot’s presence and intentions by
using either lights or speech, or other source of communication but modulating their intensity to adapt to the user’s
situation in each socio-technical setting.

5.3 Suggestions to enhance SRN social acceptance

In both cases, participants suggestions were especially oriented to enhance the robots’ appearance and navigation style.
For instance, many case study 1 participants suggested that MeseroBot’s appearance can be improved by putting a cover
and a face on it, and with a stronger and stable structure to avoid wobbling. In case study 2, participants suggested
the TIAGo could have a smoother navigation and curved paths. Likewise, De Heuvel et al. [25] show how participants
preferred curved paths for a robot passing by a human. Since the implemented SRN approach [87] in this study uses a
sampling-based technique and does not consider the robot’s kinematic constrains, the resultant trajectories tended to
be irregular and linear. As a consequence, the used SRN approach generated geometric paths which abruptly changed
the direction of the robot and caused a perception of indecision in both cases. Apart from that, the abrupt changes of
direction greatly affect robots with weak structures, such as MeseroBot, by causing wobbly movements which generated
negative emotions (e.g., feeling unsafe) on participants. To increase the social acceptance of the moving robot, the
design of SRN approaches not only need to consider kinematic constraints to generate curved paths, but also need
to be consistent with the moving trajectory and apply smooth acceleration and deceleration behaviours. Doing so
would also avoid wobbling issues, especially for robots with weak structures such as the MeseroBot, that look unstable
when attempting to follow geometric paths. In addition, generating curved paths would increase the predictability and
legibility of the robot [26], a similar concern also seen in [60], and would also improve the interaction between humans
and robots and the anthropomorphic perception of the robots [46].

5.4 Limitations and Future Work

One of the limitations of our study is the use of convenient sampling, since many of our participants in Ecuador were
either students or researchers from engineering and computer science, and in the UK, they were students or researchers
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with a psychology and computer science background, whose exposure to technology in an academic setting could have
altered their perception of the experiments [95], and thus we acknowledge that they are not representative of the entire
population. Future work should conduct controlled in-the-wild studies with participants beyond academic settings to
improve the generalizability of the findings and also consider field studies that capture the natural behaviour of people
surrounding the robot. In addition, there were some technical limitation with the people’s tracker used which delayed
the detection of new approaching people to the robot. Furthermore, due to lack of processing power of the robots’
computing capabilities, we placed a laptop on top of both robots to run the SRN approach, which changed the robot’s
appearance and raised a potential concern of the laptop falling during movement.

Future work should improve the used navigation system to make smoother movements by using curved paths with
adjustable speed depending on the situation at hand. Future work should also consider that the physical shape of the
robot and its anthropomorphism, have to go according to the user expectations and the practicalities and constraints of
each socio-technical context [32]. As highlighted by Tornbjerg and Kanstrup [90], many of the socio-technical factors
that influence robot acceptance are not often anticipated before deployment. In addition, future user studies should
include quantitative and qualitative data collection methods to complement each other and provide a broader evaluation
of the social acceptance of SRN. We encourage the HCI and HRI communities to conduct more qualitative user studies
exploring the potential adaptations and acceptance of SRN systems while having in mind the importance of robot’s
sensitiveness to the situated socio-technical context (e.g., spatial constraints, people’s perceptions, expectations, and
experiences, etc.) [45, 90].

6 Conclusions

We present two case studies and carried out experiments to evaluate the acceptance of a SRN approach and highlight
a number of socio-technical factors that influence navigating robots acceptance in real-life environments. The case
studies were conducted in two different socio-technical contexts with two different robots in two different scenarios.
Our experiments provide in-depth insights into the user’s perceptions, experiences, emotional responses and the robot
navigation capabilities and suggestions for improvement that are central determinants of acceptance of navigating
robots in each socio-technical setting. Some of these improvements include adjusting the robot’s speed and movement
to respect the personal space comfort of surrounding people according to the available space in the environment (e.g.,
higher speed in bigger settings), as well as moving in curved and smooth trajectories regardless of the surrounding in
order to match the expectations of people.
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