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The Impact of Data Aggregation: Advocating for Individualized Analysis in
Wearable Sensor Research
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versity of Waikato, New Zealand

The use of wearable sensors to record physiological data is becoming increasingly common, both in research and in daily life. User
studies collect data using wrist bands, chest straps, and headbands to measure heart rate, skin conductance, and brain activity, to name
a few. These readings can then be used to classify a range of physical and cognitive functions, such as cognitive and physical workload,
cognitive and physical fatigue, stress, and attention. However, while physiological data is highly individualized, many researchers
use machine learning classification methods that combine the participants’ data into one dataset. In this paper, we demonstrate the
negative impact this has on results and show that the individualized nature of physiological data requires individualized analysis and
classification.
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gies → Machine learning; • Applied computing→ Life and medical sciences.

Additional Key Words and Phrases: Wearable technology, Participatory studies, Individualised data, Physiological data, Cognitive
workload, Machine learning

ACM Reference Format:
Jemma L König, Jascha Penaredondo, Nick Lim, Annika Hinze, and Judy Bowen. 2018. The Impact of Data Aggregation: Advocating
for Individualized Analysis in Wearable Sensor Research. In Proceedings of Make sure to enter the correct conference title from your

rights confirmation emai (Conference acronym ’XX). ACM, New York, NY, USA, 16 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction

With recent advancements in wearable technology, both researchers and industry have begun investigating the use of
physiological data to identify and predict cognitive functions and physical conditions. Measures such as brain activity
and heart rate have been identified as suitable indicators of cognitive load (e.g., to identify driver workload [46]). The
technology needed to collect appropriate data, as well as the AI and machine learning algorithms needed to make
predictions from the data have become more accessible outside of specialist settings. This has enabled HCI researchers
to use indicators of cognitive load as a measure of usability and accessibility of proposed systems, for example Novak
et al.’s work on measuring cognitive load of virtual reality systems [47]. However, using physiological measures and
cognitive load in user studies is not without it’s challenges. Kosch et al. [36] noted that with the wide variety of
methods and measures available, researchers may easily misuse methods or apply them out of context, leading to invalid
results. Similarly, there is an increasing awareness of both ethics and effectiveness of such methods across a variety of
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domains [35, 45]. Here we focus on the implications of combining data from multiple participants to identify patterns
in individuals.

Our research focuses on the use of physiological readings to identify cognitive functions. However, physiological
readings are highly personalised [12]. A resting heart rate of 40 beats per minute, for example, may be normal for one
person, but of serious concern for another. For commercial wearable devices, like the Readiband Fatigue Predictor,1 this
is not a problem as all data collected belongs to one person and is collected over time, enabling a large personalised
dataset to be collected and used for baseline and benchmarking. Yet, when using physiological data to identify cognitive
functions, researchers tend to combine individual data together to form a larger, more generalised dataset (see Section 2.3),
to train and test machine learning algorithms. However, this practice assumes a commonality in physiological data
between participants. We suggest instead that the highly personalised nature of physiological data requires analysis on
an individual level, and that doing so will provide better and more meaningful findings.

This paper uses cognitive workload as a case study to illustrate the issue. Cognitive workload refers to the mental
effort and resources required to perform a particular task or cognitive activity. Prolonged periods of high cognitive
workload can cause cognitive fatigue, which in turn can cause accidents or injuries [26]. As such, many researchers
have begun investigating the classification of cognitive workload, often using physiological data points such as heart
rate, heart rate variability, skin conductance, and brain activity [27, 43, 60].

This paper describes a study in which physiological data was recorded for 26 participants while they undertook
first a resting task and then a cognitively intensive task. This dataset has then been used to predict cognitive workload
using machine learning algorithms and a selection of evaluation regimes. machine learning algorithms can be trained
and tested using a number of evaluation regimes. When working with physiological data, the most common involves
combining all participants’ data together. However, other, less common, approaches include training on data from 𝑛 − 1
participants and testing on the remaining participant data (leave-one-out), or treating each participant as their own
dataset. In this paper, we apply these three evaluation regimes, and discuss the results in light of the repercussions of
treating participatory data collectively versus individually.

We begin with a literature review that was used to determine the physiological data points to use for cognitive
workload classification, and the machine learning algorithms and evaluation regimes that are most commonly used.
After this, we outline our case study, including the study methodology, the machine learning classification, and the
evaluation approaches. Finally we discuss our findings, highlight the difference in results, and provide visualisations of
individualised physiological data.

2 Literature Review

A systematic literature review was conducted to determine (1) the physiological data points that are commonly used in
cognitive workload research, (2) the classification methods commonly used in cognitive workload research, and (3) the
evaluation approaches that are commonly used in cognitive workload research.

As shown in Figure 1, the first 100 articles (sorted by relevance) were selected from Google Scholar when using the
search term ‘extracting “physiological data” to predict “cognitive workload” using “machine learning” techniques’. 39 of
these articles were excluded based on the selection criteria listed below.

(1) The article must include one or more forms of physiological data
(2) The article must focus on cognitive workload (as opposed to other cognitive functions).

1https://fatiguescience.com/how-it-works/
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The Impact of Data Aggregation 3

Fig. 1. Systematic literature review decision flow chart

Table 1. Physiological data points that are commonly used in cognitive workload research

Physiological data points Total number of articles Citations
ECG 38 [3–5, 8–11, 13, 16–18, 20, 21, 24, 27, 28, 31, 32, 37,

38, 40–44, 46, 48, 50–53, 56, 58, 59, 64, 65, 70, 71]
EEG 31 [6, 7, 14, 16, 19, 20, 22–25, 28–31, 33, 39, 41, 46,

48, 53, 54, 57, 60, 62, 63, 65–68, 72, 73]
EDA 26 [4, 9–11, 13, 17–19, 24, 27, 28, 31, 37, 38, 40, 43,

44, 50, 52, 58, 59, 64, 65, 69–71]

(3) The article must use machine learning methods to perform classification

In addition to the above selection criteria, the included articles had to be written in English, and include full text
availability. This resulted in 61 articles being included in the final literature review.

2.1 Physiological data points

Table 1 illustrates the physiological data points we found to be commonly used in the literature. Electrocardiography
(ECG) was the most commonly used physiological measure of cognitive workload, used in 38 articles. ECG records
the heart’s electrical activity, and is used to calculate Heart Rate (HR) and Heart Rate Variability (HRV). Electroen-
cephalogram (EEG) was used in 31 articles. EEG measures the electrical activity of the brain, and was the second-most
commonly used physiological measure of cognitive workload. EEG includes up to 64 channels, which are used to
measure the activity in different areas of the brain (e.g. occipital, temperal, frontal, etc.). Electrodermal activity (EDA)
was used in 26 articles. EDA measures variation of the electrical activity from the sweat glands, which is observed as

Manuscript submitted to ACM
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Table 2. Machine learning classifiers that are commonly used in cognitive workload research

Machine Learning Classifiers Total Number of Articles Citations
SVM (including SVC) 36 [3, 5–7, 13, 16–18, 20, 21, 24, 25, 27, 29, 33, 37,

38, 41, 43, 44, 46, 48, 50–53, 55, 57, 59, 60, 62, 63,
65, 69–71]

Random Forest 19 [5–7, 13, 18, 29, 37–40, 43, 44, 50, 52, 53, 60, 62,
65, 68]

K-Nearest Neighbour 18 [3–7, 13, 18, 38, 39, 41, 43, 48, 52, 53, 57, 58, 62,
65]

Table 3. Machine learning evaluation techniques that are commonly used in cognitive workload research

Methods of Evaluation Total Number of Articles Citations
All-participants 42 [3, 5–9, 11, 14, 16–20, 24, 27, 29, 31, 33, 38–41,

43, 44, 46, 48, 50–52, 54–56, 60, 62–66, 68–71]
Leave-one-out 11 [23, 29, 31, 32, 37, 42, 48, 56, 71–73]
Individual 8 [4, 17, 25, 40, 46, 52, 58, 66]

changes in the electrical conductance of the skin. The most-commonly used artifact of EDA is the skin conductance
response (SCR). Other, less commonly used physiological data points included respiration rate and accelerometer data.

2.2 Cognitive workload classification methods

Table 2 illustrates the machine learning classifiers that were commonly used in the literature. Support Vector Machine
(SVM) was used in 36 articles. SVM is a supervised learning method that can perform linear and non-linear classification
and regression. Random forest (RF) was used in 19 articles. RF is an ensemble-learning technique in which many decision
trees are used to provide solutions. K-Nearest Neighbour (KNN) was used in 18 articles. KNN is an instance-based
supervised learning method. Upon classification of a new instance, KNN predicts based on the k-nearest training
examples. Each of these are discussed further in Section 4.3. Finally, a collection of other machine learning classifiers
were used in 15 or less articles each: Naive Bayes, Decision Tree, Logistic Regression, LDA, Neural Network based
algorithms, and AdaBoost.

2.3 Methods of evaluation

When working with physiological data, we consider three different evaluation regimes, namely: all-participants, leave-
one-out, and individual evaluation. Table 3 illustrates these commonly used evaluation methods in the literature. The
all-participants method was used in 42 articles. This method involves aggregating all participants’ data into one big
dataset. This dataset is then used with either cross-validation, or a test and train split. The leave-one-out method was
used in 11 articles. This method sets aside one participant’s data to be the testing set, and uses the rest of the participants’
data to train the model. Finally, the individual method was used in 8 articles. This method involves selecting one
participant and using only that participant’s data to build and train the machine learning model. Each of these are
discussed further in Section 4.4.
Manuscript submitted to ACM
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The Impact of Data Aggregation 5

3 Methodology

The original goal of this project was to develop an optimal machine learning model that can accurately classify the
cognitive workload level of an individual, either resting or cognitive, based on various physiological readings. Based
on the results of the literature review, we identified ECG, EDA and EEG as the most common physiological data
points. We have selected ECG and EDA for use in our study. EEG has been excluded due to it’s more invasive nature,
and it’s limitations in non-laboratory based environments. In addition to this, we have included accelerometer data.
Accelerometer data is included in the sensors used for this study (see Section 3.2) and has been shown to be beneficial
in the measurement of cognitive and physical workload [34].

3.1 Participants

The study was conducted with 26 participants between the ages of 20 and 40. Participants were university students
who took part as a component of their undergraduate coursework. Ethical consent was received from the University
ethics committee before the commencement of the study (HECS2023#06).

3.2 Equipment

The physiological measures recorded for each participant were HR, HRV, EDA, and accelerometer data (x, y, and z axes).
Two wearable sensors were used throughout the study: (1) the Polar H10 Heart Rate Monitor, and (2) the Mindfield
eSense Skin Response Sensor.

The Polar H10 Heart Rate Monitor2 records raw ECG, HR, HRV, and accelerometer data. The sensor is attached using
a chest strap, and was fitted around the torso of each participant. Data was collected via a mobile application called
Reading People [35].

The Mindfield eSense Skin Response Sensor3 records EDA. The sensor includes two electrodes, which were fitted on
the middle and ring finger of the participant’s non-dominant hand. This sensor was also interfaced with the Reading
People application which transfers the aggregated EDA data via the headphone jack.

3.3 Protocol

The protocol for the study included two tasks: (1) a resting task, and (2) a cognitively-intensive task. Participants
performed the study in a controlled environment (a quiet office space) to ensure a non-disruptive experience. Sessions
were run at different times throughout the day and week. However, every effort was made to provide participants with
a space devoid of external noise or distraction. The study was run as follows:

(1) The participant arrived and the study was explained to them. Participants were provided the opportunity to ask
any questions and/or opt out of the study. Participants were provided with the ethics approval information,
signed the ethical consent form and the study began.

(2) The sensors were fitted and the mobile application was set up to start recording.
(3) Task 1: Participants were asked to sit quietly and rest for 10 minutes. The start time was recorded.
(4) The cognitively intensive task was loaded onto the computer, and participants were shown how to use it.
(5) Task 2: Participants were asked to perform the cognitively intensive task for 10 minutes. The start time was

recorded.

2https://www.polar.com/nz-en/sensors/h10-heart-rate-sensor
3https://mindfield-esense.com/esense-skin-response/
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(6) At the end of the session, the physiological recording was stopped and the sensors were removed. The dataset
was then saved to the researcher’s computer.

The cognitively intensive task was conducted using the NASA Multiple Attribute Task Battery. The NASA Multiple
Attribute Task Battery (MATB) is a flight simulator that requires participates to monitor and track multiple tasks at
once. This includes a monitoring task, a tracking task, an auditory task, and a resource management task. For the
purpose of our study, the cognitive task was set up using OpenMATB, an open-source version of MATB, in which
tracking, monitoring, and resource managing are simulated simultaneously [15]. This system has been shown to induce
cognitive workload [49]. OpenMATB was run on a Dell Latitude laptop using a Logitech Extreme 3D Pro joystick.

Each participant completed the study twice, on two separate occasions, with a minimum interval of 24 hours between
sessions.

4 Classification

4.1 Data Aggregation and Extraction

As discussed in Section 3, a dataset of HR, HRV, EDA, and accelerometer data was collected from 26 participants. This
resulted in 52 folders of data,4 each containing four data files (HR.txt, HRV.txt, EDA.txt, ACC.txt). Each of the data files
has been read in and converted to a dataframe5 in Python. A sliding window of was applied to aggregate the data for
each participant. Sliding windows are used to account for the different sample rates when recording physiological data.
The sliding window had a width of 60 seconds and a slide of 5 seconds.

Once the data was aggregated, the next step was to extract the data that was recorded during the 10 minute resting
task, and during the 10 minute cognitively intensive task. Additionally, the first and last minute of data have been
removed from each task, in order to mitigate any noise that may have been introduced at the start and end of the
tasks. This resulted in four eight-minute time-blocks for each participant (two resting time-blocks, and two cognitive
workload time-blocks). Finally, classification labels were added to each of the data points: 0 for cognitive and 1 for
resting.

4.2 Pre-processing features

Pre-processing features involves transforming and preparing data before it is fed into a machine learning model.
This is necessary to enhance the quality of data and consequently improve the model’s performance. Our data was
pre-processed in two ways: imputation, and feature scaling.

Imputation involves replacing missing values within the variables of the dataset with statistical measures such as the
mean, median, etc. Since the individual physiological readings were recorded at different frequencies, there were time
differences when the data was aggregated. This results in missing values, hence the need for imputation, in this case
using the median strategy. This means that the missing data is replaced with another value based on the median of the
features with the missing values, a process that occurs within the training set.

Feature scaling involves normalising the data. This means to scale the features (i.e. variables) to a similar range to
prevent certain features from dominating others upon model training. In particular, standardisation is used in order to
scale the features to have a mean of 0 and a standard deviation of 1. This is particularly important for distance-based
algorithms such as K-Nearest Neighbours or gradient descent-based algorithms.

4Two folders for each participant, based on the two study sessions
5A dataframe is a 2D array of rows and columns.
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Table 4. Results: All-participants classification (the classifier with the highest result is highlighted)

SVC RF KNN
All participants 0.739 0.738 0.697

4.3 Classifier selection

Based on our literature review findings, the following machine learning classifiers were used to perform the cognitive
workload classification: Support Vector Classifier, Random Forest, and K-Nearest Neighbors.

Support Vector Classifier (SVC), or linear Support Vector Machine (SVM) is a supervised machine learning algorithm
used for binary classification (i.e. where the goal is to predict one of two possible outcomes, usually represented as 0
or 1) [1]. This algorithm finds the hyperplane that best separates the two classes in a feature space. The purpose of
this hyperplane is to maximise the distance between the two classes and consequently minimise classification error.
SVC uses support vectors (i.e. data points that are the closest to the hyperplane) to determine the best position of the
hyperplane.

Random Forest (RF) is an ensemble-based machine learning algorithm based on the principle of bagging (bootstrap
aggregating) and randomness [2]. This algorithm builds a collection of trees by selecting random subsets of data and
features from the dataset and then calculates the average of the trees’ predictions to produce a more accurate result.
The number of trees (or estimators) is a hyperparameter that can be tuned to get the optimal results, in this case
estimators=10. In our findings, we fond that this relatively small number gave us the optimal results.

K-Nearest Neighbor (KNN) is an instance-based machine learning algorithm used for classification tasks. When
classifying a new instance, KNN identifies the k-nearest data points from the training set and assigns the majority class
among the neighbouring data points to the new data point [7]. The value of k determines the number of neighbours
to consider. For example, if k=3 then the algorithm considers the three closest data points to the new instance. It is
important to choose the appropriate k-value as this can significantly affect the accuracy of the model. For example, a
small k-value would not be ideal with a big dataset as it would not be representative of the whole data. As a result, the
number of neighbors that will be used in this case is 3.

4.4 Evaluation selection

The three evaluation regimes that were used to assess the effectiveness of the cognitive workload classification models
are (1) all participants, (2) leave-one-out, and (3) individual. This allows us to evaluate both the classifiers themselves,
and the different evaluation techniques.

As explained in Section 2.3, the all-participants method involves aggregating all the participants’ data into a single
dataset. This technique was used with stratified 5-fold cross-validation. Since there is a wide variety of participants, we
predict that combining all of the participants’ data together would bring about a lot of variation due to the uniqueness
of individuals. Hence, we were interested in how well the machine learning models would perform with this technique.

The leave-one-out method sets aside one participant’s data to be the testing set, and uses the rest of the participants’
data to train the model. This utilises the leave-one-out cross-validation method, wherein each data point is used
as a validation set at least once, while the rest of the data serves as the training set. As previously mentioned, the
more participants’ involved, the greater the data variability present, which can significantly influence the model’s
performance.
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Table 5. Results: Leave-one-out classification (the classifier with the highest result is highlighted for each participant)

SVC RF KNN
P1 0.715 0.728 0.663
P2 0.729 0.728 0.686
P3 0.744 0.740 0.679
P4 0.737 0.701 0.665
P5 0.720 0.725 0.695
P6 0.720 0.717 0.669
P7 0.744 0.748 0.674
P8 0.727 0.735 0.665
P9 0.733 0.745 0.669
P10 0.745 0.714 0.695
P11 0.755 0.718 0.724
P12 0.734 0.726 0.684
P13 0.701 0.736 0.696
P14 0.713 0.709 0.677
P15 0.731 0.709 0.684
P16 0.717 0.692 0.666
P17 0.715 0.716 0.669
P18 0.726 0.730 0.713
P19 0.710 0.735 0.676
P20 0.740 0.742 0.717
P21 0.741 0.730 0.703
P22 0.744 0.758 0.715
P23 0.747 0.688 0.677
P24 0.740 0.704 0.699
P25 0.752 0.745 0.706
P26 0.688 0.715 0.686

Finally, the individual method involves selecting one participant and using only this participant’s data in the machine
learning model. This has been used with the stratified 5-fold cross-validation and evaluated using the test accuracy
metric. We predicte that using only one participant’s data would have less data variability because physiological signals
are unique to each individual. Hence, training and testing with the data of the same participant should provide a more
accurate classification performance.

5 Results

Tables 4, 5, and 6 show the results for each evaluation technique. First, Table 4 shows the result for the “all participants”
evaluation method. For this evaluation method, it can be seen that SVC is the best performing classifier, with an accuracy
of 73.9%. RF has a similar accuracy (73.8%) while KNN performed the worst (69.7%). Next, Table 5 shows the results for
the “leave-one-out” evaluation technique. As can be seen by the rows in the table, the leave-one-out evaluation was
performed on each participant, where the model was trained on all other participants and then tested on the target
participant. For this evaluation method, SVC performed best for 14 of the participants (54% of participants), while RF
performed best for 12 participants (45%), and KNN did not perform best for any participants. Next, Table 6 shows the
results for the “individual” evaluation technique. Similar to the leave-one-out method, as can be seen by the rows in the
table, the individual evaluation was performed on each participant. For the individual method, each participant’s data
Manuscript submitted to ACM
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Table 6. Results: Individual classification (the classifier with the highest result is highlighted for each participant)

SVC RF KNN
P1 1.000 1.000 1.000
P2 0.980 0.973 0.993
P3 0.820 0.968 0.959
P4 0.734 0.739 0.724
P5 1.000 1.000 0.998
P6 1.000 1.000 1.000
P7 1.000 1.000 1.000
P8 1.000 1.000 1.000
P9 1.000 1.000 1.000
P10 1.000 1.000 1.000
P11 1.000 1.000 0.990
P12 1.000 1.000 0.998
P13 1.000 1.000 1.000
P14 1.000 1.000 1.000
P15 1.000 1.000 1.000
P16 0.963 0.915 0.954
P17 1.000 0.998 1.000
P18 0.954 0.902 0.939
P19 1.000 1.000 1.000
P20 1.000 0.939 0.990
P21 0.780 0.827 0.798
P22 0.856 0.966 0.920
P23 0.976 0.937 0.985
P24 1.000 0.959 0.993
P25 0.988 0.937 0.995
P26 0.956 1.000 0.944

Table 7. Results: All classification methods (the classifier with the highest result is highlighted for each evaluation method)

SVC RF KNN
All participants 0.739 0.738 0.697
Leave-one-out 0.730 0.724 0.687
Individual 0.962 0.964 0.968

was treated individually and was trained and tested using cross-validation. For this evaluation method, both SVC and RF
performed best (or best equal) for 18 of the participants, while KNN performed best (or best equal) for 14 participants.

Finally, Table 7 shows the results averaged across participants. As can be seen here, and in Tables 4, 5, and 6,
the individual evaluation method performed noticeably better than the all-participants and leave-one-out methods
(∼97% versus ∼73%). This can be indicative of the highly individualised nature of physiological data (discussed further
in Section 6). It should also be noted that KNN performs best when the individualised results are averaged across
participants (shown in Table 7), while SVC and RF performed best when the results were considered on a per-participant
basis (shown in Table 6).
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(a) ACC Readings (b) EDA Readings

(c) HR Readings (d) HRV Readings

Fig. 2. Box plots of physiological readings (for one individual participant)

6 Discussion

The original goal of this project was to develop an optimal machine learning model that can accurately classify the
cognitive workload level of an individual, either resting (class 1) or cognitive (class 0), based on various physiological
readings. While we have successfully achieved this (with 97% accuracy), the most meaningful finding that this research
produced was the difference in accuracy between evaluation regimes. Physiological data is highly personalised, and this
was reflected in our results. All three models (SVC, RF, and KNN) produced higher accuracy (97%) when considering
participants individually, as opposed to considering them collectively (69%-74%).

6.1 Participant visualisation

To further understand this pattern, we have visualised one of the participants data. Figure 2 shows a box plot for each of
the data types: accelerometer (ACC), Electrodermal Activity (EDA), Heart Rate (HR), and Heart Rate Variability (HRV).
Manuscript submitted to ACM
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(a) HR vs EDA (b) HRV vs EDA

(c) EDA vs ACC (d) HR vs HRV

Fig. 3. Scatter plots of physiological readings (for one individual participant)

As seen in the figure, there is a clear separation between the cognitive and resting values of all four data types, notably
so with the ACC and EDA readings. In terms of data variability, the ACC values have a very narrow spread for the
cognitive class while the resting class has greater variability. A similar observation can be seen in the HR readings.
Whereas, EDA and HRV have comparable variability for both the resting and cognitive classes.

Figure 3a also shows a clear separation between the data points of the resting class and the cognitive class. For
instance, the resting class generally has low EDA and HR values while the cognitive class has higher EDA and HR
values. Overall, it can be observed that EDA and HR increase when performing a cognitive task. The same pattern can
be observe with the EDA and ACC values as shown in Figure 3c. It is evident that EDA increases from the resting class
to the cognitive class, with ACC also increasing, which indicates a positive relationship between EDA and ACC. This
is understandable, as a cognitive activity can make a person adjust their position or movement, resulting in greater
acceleration. Similarly, a high cognitive load can lead to an increase in the skin conductance (EDA) as also demonstrated
by [61].
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6.2 Limitations

While this study provides valuable insights into the classification of individualised physiological data, some limitations
need to be noted, specifically (1) the size of the datasets, (2) the environment of the study, and (3) the simplicity of the
data.

First, the study included 10 minutes worth of data for each of the resting and cognitive activities, which was further
cut down after data processing to 8 minutes each (as discussed in Section 4). After aggregating the data, there were a
total of 409 instances for each participant. When training and testing on all participants (all participants evaluation and
leave-one-out evaluation), this results in a total dataset of 10,634 instances. However, when considering each participant
alone (individual evaluation) this results in 26 datasets of only 409 instances each. This is a considerably small dataset
for machine learning, which could attribute to the machine learning models high accuracy rate. With a limited amount
of data, achieving an accuracy of 97% could be a result of an overfitted model rather than a robust one. For instance, the
model may be memorising instances instead of actually learning data patterns during the training phase.

Second, the study was conducted in a controlled environment and real-world conditions may introduce additional
factors and challenges that were not addressed in this project. Researchers often discuss the differences between
laboratory-based and in-situ studies. König et al. [35], for example, discuss the challenges when conducting research
on-site out in industry. While our controlled environment was satisfactory as a preliminary study, it should be noted
that the collection of physiological data in real-world scenarios tends to result in significantly more complex readings.
For example, our participants were sitting still during the cognitively intensive task. This allowed us to more easily
identify cognitive workload using ECG and EDA. However, in a real-world scenario, participants may be moving around
and completing other tasks simultaneously. This would complicate the readings that are received, e.g., heart rate may
reflect both physical activity and cognitive workload.

Finally, the distribution of data as seen in Section 6.1 is uniform and there is a clear separation between data points
of both classes for all types of physiological reading. While this suggests that the model may not be overfitting, it also
indicates the low complexity of the data. This can lead to a lack of variability, which in turn can indicate that the data
is not representative of real-world scenarios. As a result, the model might not be as robust when applied to practical
settings. This is of particular relevance for the individual evaluation method, as evaluating each participant individually
removes a lot of the variability in the data points.

6.3 Future work

There are three main areas in which we would like to expand this study. First, Section 6.1 outlined the visualisation of
one participant’s data. The next step would be to visualise the data for each participant, thereby identifying trends
across participants and investigating whether all participant data is as segmented as our first visualisation.

Second, we would like to repeat this study with an increased size of the dataset for each participant. For example, by
increasing the number of sessions from two to ten, the size of each individual dataset would increased from 409 to 2,045
instances. This would allow us to investigate the variation in physiological readings, not just between participants, but
for each individual participant. Collecting resting and cognitive data from each participant on ten different occasions
would allow for greater variation of days and times.

Third, we would like to extend the study with a focus on the complexity of the data. While the current study was
conducted in a controlled environment, one of the next steps would be to conduct the same study in a less controlled
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environment. This would highlight whether real-world conditions result in less segmented and more complex patterns,
and introduce additional factors and challenges that were not addressed in this project.

7 Conclusion

This paper investigates different ways of approaching participatory data. Using cognitive fatigue as a case study, we
evaluate the effectiveness of treating participants collectively or as individuals. We demonstrate this by analyzing a
dataset of physiological data from 26 participants, which included measures such as heart rate, heart rate variability,
skin conductance, and movement. Our findings revealed that evaluation methods that treated each participant as an
individual achieved an average accuracy of 97%, compared to 74% and 73% for methods that combined all participants
data. These results highlight the potential improvements when acknowledging the unique physiological profiles of
individuals. Therefore, incorporating individualized analysis into the study of wearable technology and physiological
data could enhance the precision and relevance of such research.
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