
A Tutorial Guide to Programming PIC18, PIC24
and ATmega Microcontrollers with FlashForth.

2016 Revision

Mechanical Engineering Report 2016/01
P. A. Jacobs

School of Mechanical and Mining Engineering
The University of Queensland.

January 27, 2016

Abstract

Modern microcontrollers provide an amazingly diverse selection of hardware peripherals,
all within a single chip. One needs to provide a small amount of supporting hardware
to power the chip and connect its peripheral devices to the signals of interest and, when
powered up, these devices need to be configured and monitored by a suitable firmware
program. These notes focus on programming the 28-pin PIC18F26K22 microcontroller
and its 40-pin PIC18F46K22 sibling in a simple hardware environment. A number of
example programs, in the Forth language, are provided to illustrate the use of some of
each microcontroller’s peripheral devices. The examples cover the very simple “flash a
LED” exercise through to driving a character-based LCD via its 4-bit parallel interface.
The set-up and use of FlashForth 5 on the PIC24FV32KA302 and AVR ATmega328P
microcontrollers is also covered.

1

CONTENTS 2

Contents

1 A selection of microcontrollers 4

2 Development boards 7
2.1 PIC18 family boards . 7
2.2 AVR and PIC24 boards . 10

3 FlashForth 14
3.1 Getting FlashForth and programming the MCU 14
3.2 Building for the PIC18F26K22 or PIC18F46K22 15
3.3 Building for the PIC24FV32KA302 . 17
3.4 Building for the ATmega328P . 17

4 Interacting with FlashForth 18

5 Introductory examples 20
5.1 Hello, World: Flash a LED on the PIC18FX6K22 20
5.2 Flash a LED on the PIC24FV32KA302 . 21
5.3 Flash a LED on the ATmega328P . 22
5.4 Set the cycle duration with a variable (PIC18FX6K22) 23
5.5 Hello, World: Morse code . 24

6 Read and report an analog voltage 25
6.1 PIC18FX6K22 . 25
6.2 PIC24FV32KA30X . 26

7 Counting button presses 28

8 Counting button presses via interrupts 30

9 Scanning a 4x3 matrix keypad 32

10 Base words for an I2C master 34
10.1 PIC18FX6K22 . 34
10.2 PIC24FV32KA30X . 36
10.3 ATmega328P . 38
10.4 Notes on using the words . 40
10.5 Detecting I2C devices . 41

11 Using I2C to get temperature measurements 42

12 Making high-resolution voltage measurements 43

13 An I2C slave example 45

CONTENTS 3

14 Speed of operation – bit banging 49
14.1 PIC18F26K22 . 49
14.2 PIC24FV32KA302 . 51
14.3 ATmega328P . 53

15 Driving an Hitachi-44780 LCD controller 56

A Using other terminal programs on Linux 60

1 A SELECTION OF MICROCONTROLLERS 4

1 A selection of microcontrollers

Over the past couple of decades, microcontrollers have evolved to be cheap, powerful
computing devices that even Mechanical Engineers can use in building bespoke instru-
mentation for their research laboratories. Typical tasks include monitoring of analog
signals, sensing pulses and providing timing signals. Of course these things could be done
with a modern personal computer connected via USB to a commercial data acquisition
and signal processing system but there are many situations where the small, dedicated
microcontroller, requiring just a few milliamps of current, performs the task admirably
and at low cost.

Modern microcontrollers provide an amazingly diverse selection of hardware peripherals,
all within a single chip. One needs to provide a small amount of supporting hardware
to power the chip and connect its peripheral devices to the signals of interest and, when
powered up, these devices need to be configured and monitored by a suitable firmware
program. These following sections provide an introduction to the details of doing this with
an 8-bit Microchip PIC18F26K22 or PIC18F46K22 microcontroller, a 16-bit Microchip
PIC24FV32KA302 microcontroller and an 8-bit Atmel ATmega328P microcontroller, all
programmed with the FlashForth version 5 interpreter [1].

Within each family of Microchip or Atmel microcontrollers, the individual microcontroller
units (MCUs) all have the same core, i.e. same instruction set and memory organisation.
Your selection of which MCU to actually use in your project can be based on a couple
of considerations. If you are on a tight budget and will be making many units, choose
an MCU with just enough functionality, however, if convenience of development is more
important, choose one with “bells and whistles”. For this tutorial guide, we will value
convenience and so will work with microcontrollers that have:

• a nice selection of features, including a serial port, several timers and an analog-to-
digital converter. See the feature list and the block diagram of the PIC18F26K22
and PIC18F46K22 MCUs on the following pages.

• a 28-pin narrow or 40-pin DIL package, which is convenient for prototyping and has
enough I/O pins to play without needing very careful planning.

• an ability to work as 3.3V or 5V systems.

• a pinout as shown at the start of the datasheets (books) [2, 3, 4]. You will be reading
the pages of these books over and over but we include the following couple of pages
from the PIC18F22K26/PIC18F46K22 datasheet to give an overview.

• an internal arrangement that is built around an 8-bit or 16-bit data bus.

• the “Harvard architecture” with separate paths and storage areas for program in-
structions and data.

We won’t worry too much about the details of the general-purpose registers, the internal
static RAM or the machine instruction set because we will let the FlashForth interpreter
handle most of the details, however, memory layout, especially the I/O memory layout
is important for us as programmers. The peripheral devices, which are used to inferface
with the real world, are controlled and accessed via registers in the data-memory space.

1 A SELECTION OF MICROCONTROLLERS 5

����������� ���	
���������
�
������� ���������������

��������	
����

��������������������� ���

� ���
�����	������� �!�"	�������#	�$

� ����
�����%���!�!���&�	#���
��&���!�&����!��

����� ��	�����	��� �
!�

� '���
������(���&������))*+��

� '���
 ,� -.���& /����	�*	
�	������
	�

"!!	�&&���

� '���
��01,�(���&�/����	���������
	��"!!	�&&�

���

� '���
��,���*�����	���
�

� �,�.���2�!����&�	#���
�&3�0�.���2�!�������*���

� *	�
	����/�4��&�5
	�����		#��&

� ���/�4��3��
5�6�	��"���&&�.���7�	!6�	������8

� 0�%�0��������������7�	!6�	���#�������	

	!�"�#!��$%��!!�&����&�'�&'��

� *	���&�
���, �7 �����	�����&������
	 (�
�8$

� ����
	������.	���!��
�9��:

� �������.���5	�;#�����&3��� 87 ��
��, �7

� ,� �7 ���	5
	�������4����.���#&����*//�<

�
��%��	�����
��
����&�	�;#�	�!

� �
#	��	�&�����
!�&�#���
�,� �7

� 6
�)%��	������
�8��
!�&�#���
�,� �7

� �=�*��&��/
�8�/

��>*//?

� ���
�!�	���&������
	�#&�������	��@��� 87

� �������5����
�8��
���
	$

� "��
6&�5
	�&�5��&�#�!
6���5���	����	�����
�8�

&�
�&

� 6
�����!��&������
	����	��#�

(��!���	��&'��%

� "���
���
����������
�4�	��	�>"��?��
!#��$�

� ���.���	�&
�#��
�3�#���
�����%��	��� �������&

� "#�
���;#�&���
������.�����

� �
�4�	&�
���4����.���!#	���������

� ��%�!�A
������+�5�	�����>�A+?��������

� ��!����!�������#���#������%���

� "���
���
���	��
	��
!#��$

� 6
�	�����
�	��������
���
���	��
	&

� ��!����!�������#���#������%���

� ���������
�"���
���
�4�	��	�>�"�?��
!#��$

� ��%�!�A
������+�5�	�����>�A+?�6���������A3

����0A���!����1,A�
#��#����4��&

� B�.���	�����
�	����	�&�&��4���"��6�����
&���4�

��!�������4� 	�5�	�����&������
�

� ���	�� ��� ���&#	������'����>��'?��
!#��$

� �#��
	�&���������4���
#���&��&����5
	��
#���

&�	���&���!���������4��&6�����&

)"&�������*���*���+��������&

��������	
����

�*�&� ���

� �������
!�$�����"3��������

� 2����!
�����	$ �����"3��������

� ���	���&������
	$�0����"�@����87

� *�	����	����
!#�����&�.��

�,����!�+�������&��!!���	��&'��%

� ���A��
�B�BA����	���
��<�*���0�==-���!�4���&

� ��0A��
���,A����	���
��<�*���0/�==-���!�4���&

� ���5�*	
�	����.���#�!�	��
5�6�	���
��	
�

� 7���C/
6�A
�������������
��>7/A�?��
!#��$

� *	
�	����.����,�/�4��

� ����		#���
��7���C/
6�A
�������������
�

� *	
�	����.���(
6��
#��+�&���>(�+?$

� 2����&
5�6�	�����.���
���
�

� �
�5��#	�.���&�#�!
6����������

�)%���!�!�2����!
�����	�>2�?$

� *	
�	����.�����	�
!�5	
� � �&��
����&

� ������	�#�����	����*	
�	������D�>���*D?$

� ��������#������A

� �����	�#�����.#��>���?

����,����!�����!���&%

� '���
��B��C��*��&���#&������#�������*��$

� 7�����#		�������8C�
#	����B �"C�B �"

� �	����	
�	����.����%��	��������		#��&

� �
#	��	
�	����.�������		#���
��������

� E�����	
�	����.���6��8��#���#�&

� *	
�	����.���&��6 	���

� �+�/����$

� �#����������C+�&������#��
���
�&

� 6
�����#	�C�
���	�C*2��>��*?��
!#��&

� �	���)������!���*�>)��*?��
!#��&$

� ���3��6
�
	�5
#	�*2��
#��#�&

� �������.����
��	���

� *	
�	����.���!��!�����

� "#�
���#�!
6����!�"#�
�+�&��	�

� *2��&���	���

� 6
���&��	������	
�
#&���	����*
	��>���*?�

�
!#��&$

� ��6�	���*��>&#��
	�&��������
!�&?

� ���D���&��	���!����4���
!�&�6�����!!	�&&

��&8

�����������	
��������
�������������	���
�����	���������������������	���

1 A SELECTION OF MICROCONTROLLERS 6

��������	
����

����������	
��� ������������������������������
������

	����� ���� ��������	
����

�	����� ������������� ��

�����������
�������	��
�������

�	�	� 	���

�	�	���!���

"������� 	���

�	�	�"������#��$

��

"�����%�& ��&�

��&�

��&�

���'���
��
��

"������

� �� �

(�)����(�

�����(� "�)

*

+�� �,�����	�-

(��
�	!��������

(&.� (&.�)

�/����������

*

%��.(
**

" 0#*$

��

*

*

�	1���(������#��$

���'������
��

��

*

�������� �!

�	1��� 	���
*

��&

��

+

&.�� 	���

(� "�0

(�0

"#�$ �� &2+���������	,	��	1���3������ &�4�������	�����������	1����

� .���'� 5�6�	�� .���'� 5.0� 	��������	,	��	1����� �������������	����!�����	�� 3��������� ���� 	�������1���
������	����
��	���'.�
&�4������%$&�'#(
)*�+��&',,��#-��#.�,$��/'�0�	�',�%�1$��,#&2��#('�#-�3�4���	�������	����4��!	�����

4� �����%���
������	�����4���(���*7 8��95��:��	�4�1���
������	�����4���(���*7 8��95���

20�"&����!�	�	���� ���(�

���1��
"��

��!�����!���

���0��!���

��(�

) ;�

2��(�

%.& �	�	

22(&.�

<

�(��-�&�'#(����� �5!

��5(�& %	�-

*

��	���!	�����
����������
�	��

������

*

*
(�3�����
��!��

.�����	���
��	��������!��

(�3�����
&����

<	�����

��!��

.����
�

.����
�

%��3�����

&����

������	�
.�����	���

�	����	4�
����-��������

(��������

&�4������
%	���=	��� &���

%���-

 ��6�.��
.�����	���

���)>
.�����	���

���
���������
(��
�	!!��

����������
��1�

��

�.��.

�.���

�;&

�;&
�;&

�"�

"������� 	���

(��
�	!���!���
7*'�'+�'�51����8

�	�	� 	���

(.&�"

&"�?&"@

(.&�%

&%�?&%@

(.&��

&��?&�@

(.&��

&��?&�@

��!���
��!��

��!��+

��!��A

�&� 	���
20�"&�����(���(A

2��(��4�
��'�� 2��(+

(.&�2

&2�?&2�

&2+���

�"�

2 DEVELOPMENT BOARDS 7

2 Development boards

This tutorial is based around simple support hardware for each of the microcontrollers.
If you don’t want to do your own soldering, there are easy-to-buy demonstration boards
available as a convenient way to get your hardware up and going. If you are a student of
mechatroncis, however, you must eventually design and build your own hardware. The
strip-board versions are aimed at you.

2.1 PIC18 family boards

Here is a picture of PICDEM 2 PLUS with PIC18F46K22-I/P in the 40-pin socket (U1)
and running the LCD, as described in Section 15. We’ll make use of the serial RS-232
interface (MAX232ACPA, U3) to both program Forth application and to communicate
with running applications. Other conveniences include on-board LEDs, switches, a po-
tentiometer (RA0) and I2C devices, such as a TC74 temperature sensor (U5), just below
the MCU and a 24LC256 serial EEPROM (U4). Initial programming of the FlashForth
system into the MCU can be done via jack J5 (labelled ICD in the lower left of the
photograph) with a Microchip MPLAB-ICD3, PICkit3, or similar device programmer.

If you want a homebrew system, you can build a minimal system on strip-board that
works well. One of the nice things about such a strip-board construction is that you
can easily continue construction of your bespoke project on the board and, with careful
construction, your prototype can provide years of reliable service.

2 DEVELOPMENT BOARDS 8

Here is a detailed view of the home-made demo board with PIC18F26K22 in place. This
board is suitable for the exercises in this guide. A separate regulator board is to the
left and a current-limited supply provides the input power. The board is simple to make
by hand, with header pins for the reset switch and connections to the LEDs. The 4-pin
header in the foreground provides an I2C connection. The ICSP header is only needed to
program FlashForth into the MCU, initially. All communication with the host PC is then
via the TTL-level serial header (labelled FTDI-232) at the right. Beyond the minimum
required to get the microcontroller to function, we have current-limiting resistors and
header pins on most of the MCU’s I/O pins. This arrangement is convenient for exercises
such as interfacing to the 4x3 matrix keypad (Section 9).

The schematic diagram of this home-brew board is shown on the following page. Note that
there is no crystal oscillator on the board; the internal oscillator is sufficiently accurate for
asynchronous serial port communication. Note, also, the 1k resistors in the TX and RX
nets. These limit the current going through the microcontroller pin-protection diodes in
the situation where the microcontroller board is unpowered and the FTDI-232 cable is still
plugged in to your PC. This will happen at some point and, without the current-limiting
resistors, the FTDI cable will power the microcontroller, probably poorly.

2 DEVELOPMENT BOARDS 9

F
IL

E
:

R
E

V
IS

IO
N

:

D
R

A
W

N
 B

Y
:

P
A

G
E

O
F

T
IT

L
E

2 4 61 3 5

C
O

N
N

_
IC

S
P

+5V

Vss

!M
C

L
R

V
D

D

V
S

S

D
A

T
A

C
L
K

N
C

1N4004

1
k

1
k

p
ic

1
8
f2

6
k
2
2
 n

o
t−

q
u
it
e
 m

in
im

a
l
d
e
m

o
 b

o
a
rd

P
e
te

r
J
a
c
o
b
s

1
0
0
n

4
7
0

V
s
s

1
1

+
5

V

V
s
s

Vss

4
7
0

4
7
0

R
B

1

R
B

0

21

C
O

N
N

_
R

E
S

E
T

32 41

C
O

N
N

_
I2

C

5k6

5k6

Vss

+
5

V

1
0

Vss

S
D

A

S
C

L

+
V

G
N

D

G
N

D

H
O

S
T

_
T

X

H
O

S
T

_
R

X

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

R
B

5

R
B

4

R
B

3

R
B

2

R
A

1

R
A

0

R
A

2

R
A

3

R
A

4

R
A

5

R
C

0

R
C

1

R
C

2

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

3
3
0

3
0
−

A
p
r−

2
0
1
4

3
3
0

M
C

U
_
R

X

S
D

A
S

C
L

P
IC

1
8
F

2
6
K

2
2

!M
C

L
R

/V
P

P
/R

E
3

1

R
A

0
/A

N
0

2

R
A

1
/A

N
1

3

R
A

2
/A

N
2

4

R
A

3
/A

N
3

5

R
A

4
6

R
A

5
/A

N
4

7

V
S

S
8

O
S

C
1
/R

A
7

9

O
S

C
2
/R

A
6

1
0

R
C

0
1

1

R
C

1
1

2

R
C

2
1

3

R
C

3
/S

C
L

1
4

R
C

4
/S

D
A

1
5

R
C

5
1

6

R
C

6
/T

X
1

7

R
C

7
/R

X
1

8

V
S

S
1

9

V
D

D
2

0

R
B

0
2

1

R
B

1
2

2

R
B

2
2

3

R
B

3
2

4

R
B

4
2

5

R
B

5
2

6

R
B

6
/P

G
C

2
7

R
B

7
/P

G
D

2
8

U
?

S
D

A

S
C

L

M
C

U
_
R

X M
C

U
_
T

X

2 4 61 3 5

F
T

D
I−

2
3
2

R
C

5

M
C

U
_
T

X

N
C

N
C

N
C

3
3
0

R
A

7

3
3
0

R
A

6

R
B

6
/P

G
C

R
B

7
/P

G
D

R
B

6
/P

G
C

R
B

7
/P

G
D

21

C
O

N
N

_
P

O
W

E
R

V
s
s

+
5

V

1 2

2
u
2

2 DEVELOPMENT BOARDS 10

2.2 AVR and PIC24 boards

The Eleven from Freetronics, shown in the left half of the following photograph, is an
Arduino-compatible board carrying an ATmega328P microcontroller. This is a conve-
nient piece of hardware with many prototype-friendly boards available to plug into the
headers around the periphery of the board. Although these boards come with the Arduino
bootloader preprogrammed into the ATmega328 microcontroller, the standard AVR 6-pin
programming header on the right-hand end of the board (in the photo) can be used to
reprogram the microcontroller with the FlashForth interpreter. Power and serial port
access is through the USB connector at the left.

If you want an almost-no-solder option for prototyping with the PIC24FV32KA302, Mi-
crochip provide the Microstick 5V for PIC24K-series. As shown in the following photo-
graph, this is convenient in that it includes a programmer on-board and can be plugged
into a bread-board. The power supply and flash programming access is provided through
the USB connector on the left of the board while the serial port connection is via the
6-pin connector on the right-end of the board.

2 DEVELOPMENT BOARDS 11

Building a minimal board, by hand, for any of these processors is fairly easy and strip-
board versions for each is shown in the following photograph. The left-hand board is for
the PIC18F26K22, before all of the extra protection resistors were added. In this state,
FlashForth can already be used on this board for nearly all of the exercises in the following
sections. Schematic diagrams for the PIC24 and AVR microcontrollers are shown on the
following pages.

Each of the boards has headers for (1) power, (2) in-circuit serial programming, (3) I2C
communication and (4) TTL-level-232 serial communication. The ATmega328 board on
the right has a few more protection resistors installed and has an 16 MHz crystal because
serial-port communication was found to be unreliable using the internal oscillator.

2 DEVELOPMENT BOARDS 12

F
IL

E
:

R
E

V
IS

IO
N

:

D
R

A
W

N
 B

Y
:

P
A

G
E

O
F

T
IT

L
E

2 4 61 3 5

C
O

N
N

_
IC

S
P

+5V

1N4004

1
k

1
k

A
V

R
 A

T
m

e
g
a
3
2
8
 n

o
t−

q
u
it
e
 m

in
im

a
l
d
e
m

o
 b

o
a
rd

P
e
te

r
J
a
c
o
b
s

1
0
0
n

4
7
0

V
s
s

1
1

+5V

Vss

Vss

4
7
0

4
7
0

P
D

2

P
D

3

21

C
O

N
N

_
R

E
S

E
T

32 41

C
O

N
N

_
I2

C

5k6

5k6

Vss

+
5

V

1
0

Vss

S
D

A

S
C

L

+
V

G
N

D

G
N

D

H
O

S
T

_
T

X

H
O

S
T

_
R

X

3
0
−

A
p
r−

2
0
1
4

M
C

U
_
R

X

S
D

A

S
C

L

S
D

A

S
C

L

M
C

U
_
R

X

M
C

U
_
T

X

2 4 61 3 5

F
T

D
I−

2
3
2

M
C

U
_
T

X

N
C

N
C

N
C

M
IS

O

M
O

S
I

S
C

K

M
O

S
I

21

C
O

N
N

_
P

O
W

E
R

V
s
s

+
5

V

1 2

2
u
2

!R
E

S
E

T

!R
E

S
E

T

N
C

N
C

N
C

N
C

N
C

N
C

N
C

1
0
R

+
5

V

V
s
s

1
0
0
n

N
C

N
C

A
T

m
e
g
a
3
2
8

P
C

6
 (

!R
E

S
E

T
)

1

P
D

0
 (

R
X

D
)

2

P
D

1
 (

T
X

D
)

3

P
D

2
4

P
D

3
5

P
D

4
6

V
C

C
7

G
N

D
8

P
B

6
 (

X
T

A
L
1
)

9

P
B

7
 (

X
T

A
L
2
)

1
0

P
D

5
1

1

P
D

6
 (

A
IN

0
)

1
2

P
D

7
 (

A
IN

1
)

1
3

P
B

0
1

4
P

B
1

1
5

(!
S

S
)

P
B

2
1

6

(M
O

S
I)

 P
B

3
1

7

(M
IS

O
)

P
B

4
1

8

(S
C

K
)

P
B

5
1

9

A
V

C
C

2
0

A
R

E
F

2
1

G
N

D
2

2

P
C

0
2

3

P
C

1
2

4

P
C

2
2

5

P
C

3
2

6

(S
D

A
)

P
C

4
2

7

(S
C

L
)

P
C

5
2

8

U
1

4
7
0

P
D

4

V
s
s

M
IS

O

S
C

K

1
0
0
n

N
C

U2

1
6
M

H
z

1
5
p
F

1
5
p
F

2 DEVELOPMENT BOARDS 13

F
IL

E
:

R
E

V
IS

IO
N

:

D
R

A
W

N
 B

Y
:

P
A

G
E

O
F

T
IT

L
E

2 4 61 3 5

C
O

N
N

_
IC

S
P

+5V

Vss

!M
C

L
R

V
D

D

V
S

S

D
A

T
A

C
L
K

N
C

1N4004

1
k

1
k

P
IC

2
4
F

V
3
2
K

A
3
0
2
 n

o
t−

q
u
it
e
 m

in
im

a
l
d
e
m

o
 b

o
a
rd

P
e
te

r
J
a
c
o
b
s

1
0
0
n

4
7
0

V
s
s

1
1

+
5

V

V
s
s

Vss

4
7
0

4
7
0

R
B

1
5

R
B

1
4

21

C
O

N
N

_
R

E
S

E
T

32 41

C
O

N
N

_
I2

C

5k6

5k6

Vss

+
5

V

1
0

Vss

S
D

A

S
C

L

+
V

G
N

D

G
N

D

H
O

S
T

_
T

X

H
O

S
T

_
R

X

3
3
0

3
3
0

2
5
−

J
a
n
−

2
0
1
6

M
C

U
_
R

X

S
D

A

S
C

L
S

D
A

S
C

L

M
C

U
_
R

X

M
C

U
_
T

X

2 4 61 3 5

F
T

D
I−

2
3
2

M
C

U
_
T

X

N
C

N
C

N
C

R
B

6
/P

G
C

R
B

7
/P

G
D

R
B

6
/P

G
C

R
B

7
/P

G
D

21

C
O

N
N

_
P

O
W

E
R

V
s
s

+
5

V

1 2

2
u
2

!M
C

L
R

!M
C

L
R

N
C

N
C

N
C

N
C

N
C

N
C

N
C

N
C

N
C

N
C

N
C

1
2

1
0
u
F

1
0
R

+
5

V

V
s
s

1
0
0
n

Vss

N
C

N
C

10k

+
5

V

N
C

P
IC

2
4
F

V
3
2
K

A
3
0
2

!M
C

L
R

/R
A

5
1

R
A

0
2

R
A

1
3

R
B

0
/P

G
E

D
1

4

R
B

1
/P

G
E

C
1

5

R
B

2
/U

1
R

X
6

R
B

3
7

V
S

S
8

R
A

2
/O

S
C

I
9

R
A

3
/O

S
C

O
1

0

R
B

4
1

1

R
A

4
1

2

V
D

D
1

3

R
B

5
1

4
R

B
6

1
5

R
B

7
/U

1
T

X
1

6

R
B

8
/S

C
L
1

1
7

R
B

9
/S

D
A

1
1

8

R
A

7
1

9

V
C

A
P

2
0

R
B

1
0
/P

G
E

D
2

2
1

R
B

1
1
/P

G
E

C
2

2
2

R
B

1
2

2
3

R
B

1
3

2
4

R
B

1
4

2
5

R
B

1
5

2
6

A
V

S
S

2
7

A
V

D
D

2
8

U
1

3 FLASHFORTH 14

3 FlashForth

Forth is a word-based language, in which the data stack is made available to the pro-
grammer for temporary storage and the passing of parameters to functions. Everything
is either a number or a word. Numbers are pushed onto the stack and words invoke func-
tions. The language is simple enough to parse that full, interactive Forth systems may
be implemented with few (memory) resources. Forth systems may be implemented in a
few kilobytes of program memory and a few hundred bytes of data memory such that it
is feasible to provide the convenience of a fully interactive program development on very
small microcontrollers.

The classic beginners book by Brodie [5] is available online1, as is Pelc’s more recent
book [6]2. A more detailed reference is published by Forth Inc [7]. These books are biased
toward Forth running on a personal computer rather than on a microcontroller, however,
they are a good place to start your reading. For an introductory document that is specific
to FlashForth, see the companion report [8].

FlashForth [1] for the PIC18, PIC24 and ATmega families of microcontrollers is a full
interpreter and compiler that runs entirely on the microcontroller. It is a 16-bit Forth with
a byte-addressable memory space. Even though there are distinct memory types (RAM,
EEPROM and Flash) and separate busses for data and program memory in these Harvard-
architecture microcontrollers, FlashForth unifies them into a single 64kB memory.

Above working in assembler, FlashForth does use some resources, both memory and
compute cycles, but it provides such a nice, interactive environment that these costs are
usually returned in convenience while tinkering with your hardware. Forth programs are
very compact so you will have less code to maintain in the long run. The interpreter
can also be available to the end user of your instrument, possibly for making parameter
adjustments or for making the hardware versatile by having a collection of application
functions present simultaneously in the firmware, with the user selecting the required
function as they wish.

3.1 Getting FlashForth and programming the MCU

FlashForth is written in assembler, with one program source for each of the microcontroller
families and a number of Forth text files to augment the core interpreter. The source code
can be downloaded from SourceForge at the URL
http://sourceforge.net/projects/flashforth/

There, you will see that you can get a packaged release or you can clone the git repository.

To build from this source, you will need to start up your integrated development environ-
ment (be it MPLAB, MPLAB-X or AVR Studio), open the program source and config
files in this IDE and edit the config file(s) match your selection of oscillator. There are
other options to customize but the choice of oscillator is the main one. The machine
code can then be assembled and programmed into your microcontroller with a suitable
device programmer (PICkit3, ICD3, STK500, AVRISP MkII, ...). Once programmed with

1http://home.iae.nl/users/mhx/sf.html and http://www.forth.com/starting-forth/
2http://www.mpeforth.com/

3 FLASHFORTH 15

FlashForth, and mounted in a board that provides power and serial communications as
described in the previous section, you will be ready to interact with FlashForth via a
serial terminal or shell.

3.2 Building for the PIC18F26K22 or PIC18F46K22

For our minimal system with either the PIC18F26K22 or PIC18F46K22 microcontroller,
we elect to use the internal (16 MHz) oscillator multiplied by 4 by the PLL. Within the
MPLAB-X development environment, we started a new standalone project to build our
FlashForth program that will use the microcontroller’s UART serial port as the OPERA-
TOR communications channel. Following the prompt screens, we selected a specific pro-
cessor (PIC18F26K22), our hardware tool (ICD3), and the compiler toolchain (mpasm).

To build the actual machine code that will be programmed into the flash memory of the mi-
crocontroller, it is sufficient to assemble the principal source file ff-pic18.asm along with
the configuration (or header) files pic18f-main.cfg, pic18fxxxx.cfg, p18f2x4xk22.cfg,
and use the linker script FF_0000.lkr. The source file and config files can be found in
the directory pic18/src/, while the linker file is in pic18/lkr/. There may be other
configuration files already added to the project but you can ignore them.

We edited the processor-specific config file, p18f2x4xk22.cfg, writing “PLLCFG = ON” to
have the PLL enabled (giving FOSC = 64 MHz), enable the watchdog timer with a 1:256
postscale (WDTPS = 256) to get approximately a 1 second time-out period, and enable the
external reset capability (MCLRE = EXTMCLR). Being able to reset the microcontroller by
bringing the MCLR pin low is something that we find convenient when tinkering with new
hardware. We set the final line as
#define PLL ENABLE

We needed to edit the pic18f-main.cfg file only to set the system clock frequency as
constant clock=d’64000000’. With this clock frequency, the microcontroller requires
approximately 7 mA current while the interpreter is running and waiting for input.

There are many other options for customizing the FlashForth program in this file, however,
the default parameters are fine for the first build of our minimal system. To see your
options for all of the configuration bits for your specific microcontroller, it is convenient
to open the MPLAB-X view from the main menu: Window → PIC Memory Views →
Configuration Bits.

With the specific microcontroller selected for the project, the config file pic18fxxxx.cfg

will automatically select the appropriate MPLAB include file for the microcontroller, be
it p18f26k22.inc for the 28-pin chip on the home-made board or p18f46k22.inc for the
40-pin chip on the PICDEM 2 PLUS board. If the build process complains of not being
able to find the MCU-specific include file, you may need to adjust the case-sensitivity
of the assembler. This check box can be found in the Project Properties dialog, under
“General Options” for the mpasmx assembler, as shown in the following screen shot.

3 FLASHFORTH 16

The following image shows the result of building in Microchip’s MPLAB X IDE. The lower
left frame in the MPLAB-X window shows the MCU resources used. With 426 bytes of
SRAM used (another 3470 free) and 8948 bytes of program memory used (56588 free),
For the PIC18F26K22 MCU, FlashForth occupies only about one-seventh of the micro-
controller’s program memory. Most of the memory is available for the your application.
For more details on the SRAM memory map, see “The Hitchhiker’s Guide to FlashForth
on PIC18 Microcontrollers”. There, Mikael Nordman has provided a memory map that
shows how the SRAM memory is allocated within the FlashForth system.

The final step is to program the FlashForth machine code into the flash memory of the
microcontroller, using whatever device programmer you happen to have plugged into your

3 FLASHFORTH 17

development system. The Dashboard view in the screen shot above shows that we have
seleted to use of the MPLAB ICD3.

3.3 Building for the PIC24FV32KA302

Building for the 16-bit PIC24 family is similar process. This time look for the source
code files in the pic24/ subdirectory. There are fewer config files but you may need to
customize the closest one for your particular processor. Here is the required text in the
p24fk_config.inc file for our PIC24FV32KA302-I/SP microcontroller using its internal
8 MHz oscillator with 4× PLL and installed on the home-made minimal board:

;;; Device memory sizes. Set according to your device.

;;; You can increase the addressable flash range be decreasing the addressable ram.

;;; Below is the setting for max amount of ram for PIC24FV32KA302

.equ FLASH_SIZE, 0x5800 ; Flash size in bytes without the high byte

; See program memory size in the device datasheet.

.equ RAM_SIZE, 0x0800 ; Ram size in bytes

.equ EEPROM_SIZE, 0x0200 ; Eeprom size

; For some reason the normal config macros did not work

.pushsection __FOSCSEL.sec, code

.global __FOSCSEL

__FOSCSEL: .pword FNOSC_FRCPLL

.popsection

; Start additions for FF Tutorial board with PIC24FV32KA30x

.pushsection __FOSC.sec, code

.global __FOSC

__FOSC: .pword OSCIOFNC_OFF

.popsection

.pushsection __FICD.sec, code

.global __FICD

__FICD: .pword ICS_PGx2

.popsection

; End additions

.equ FREQ_OSC, (8000000*4) ;Clock (Crystal)frequency (Hz)

Once programmed, FlashForth uses 542 of the microcontroller’s 2048 bytes of SRAM
and 4544 of the MCU’s 11264 words of Flash memory. This leaves most of the memory
for your Forth application program. Although this appears to be a lot less than that
available in the PIC18F26K22 MCU, this 16-bit MCU has lots of interesting hardware.
With instruction cycle frequency of 16 MHz and the interpreter waiting for input, the
current consumption is 7.5 mA, approximately the same as for the 8-bit PIC18F26K22.

3.4 Building for the ATmega328P

Assembling the FlashForth program within the AVR Studio IDE is fairly simple but Mike
Nordman has made life even simpler for users of Arduino-like hardware by providing a
prebuilt .hex file that can be programmed into the ATmega328P. Here is the command
for doing so with avrdude on a Linux PC.

$ sudo avrdude -p m328p -B 8.0 -c avrisp2 -P usb -e \

-U efuse:w:0x07:m \

-U hfuse:w:0xda:m \

-U lfuse:w:0xff:m \

-U flash:w:ff_uno.hex:i

4 INTERACTING WITH FLASHFORTH 18

The fuses are set to use the 16 MHz crystal on the Arduino-like board.

4 Interacting with FlashForth

Principally, interaction with the programmed MCU is via the serial port. For the PIC mi-
crocontrollers, settings are 38400 baud 8-bit, no parity, 1 stop bit, with software (Xon/X-
off) flow control. For the ATmega328P (as programmed above), the baud rate is 9600.

The FlashForth distribution includes a couple of shell programs that are programmed
with some knowledge of the FlashForth interpreter. The ff-shell.py program is written
in Python and allows interaction with the microcontroller via a standard command shell.
It depends on a Python interpreter and the pyserial extension being installed on your PC.
The ff-shell.tcl is a GUI program that displays the interaction text in a dedicated
window on your PC. It requires the Tcl/Tk interpreter which is usually part of a Linux
environment but it may be installed on MS-Windows or MacOSX as well.

The following images shows the ff-shell.tcl window just afer sending the content of
the flash-led.txt file to the PIC18F26K22. The device name of /dev/ttyUSB0 on the
status line refers to the USB-to-serial interface that was plugged one of the PC’s USB
ports. It is convenient to start the program with the command

$ sudo ./ff-shell.tcl

If necessary, you can adjust the communication settings by typing new values into the
entry boxes and pressing Enter to repoen the connection.

As you type characters into the main text widget, ff-shell.tcl intercepts them and
sends them, one at a time, via the serial port to the microcontroller. As the microcontroller
sends characters back, the program filters them and displays them in the text widget.
There is also a send-file capability that will send the text from the file as fast as it can,

4 INTERACTING WITH FLASHFORTH 19

without overwhelming the microcontroller. The Python program ff-shell.py has a
special command #send to start the equivalent process.

If you have sent the microcontroller off to do a repetitive task, such as flashing the LED
indefinitely, you can regain the interpreter’s attention by sending a Control-O character.
The interpreter aborts the execution of the current word and does a software restart.
After initialization, the interpreter announces that it is ready to begin. Subsequently
pressing Enter will get the ok response, as shown below. The warm restart action is also
available from the menu as Micro→Warm Restart.

We find ff-shell.tcl a very convenient interaction environment, however, if you want
to use a standard terminal program on Linux, Appendix A provides a few notes for doing
so.

5 INTRODUCTORY EXAMPLES 20

5 Introductory examples

We begin with examples that demonstrate a small number of features of the MCU or of
FlashForth. Our interest will primarily be in driving the various peripherals of the MCU
rather than doing arithmetic or dealing with abstract data.

5.1 Hello, World: Flash a LED on the PIC18FX6K22

The microcontroller version of the “Hello, World” program is typically a program that
flashes a single LED. It will work on either of PIC18F microcontrollers mentioned pre-
viously and makes use of a digital input-output pin via the registers that control the IO
port. The datasheet [2] has a very readable introduction to the IO ports. Please read it.

1 -flash -led

2 marker -flash -led

3 $ff8a constant latb

4 $ff93 constant trisb

5 : init 1 trisb mclr ; \ want RB0 as output

6 : do_output latb c@ 1 xor latb c! ; \ toggle RB0

7 : wait #500 ms ;

8 : main init begin do_output wait again ;

9 main

Notes on this program:

• If the word -flash-led has been previously defined with the word marker, line 1
resets the dictionary state and continues interpreting the file, else the interpreter
signals that it can’t find the word and continues interpreting the file anyway.

• Line 2 records the state of the dictionary and defines the word -flash-led so that
we can reset the dictionary to its state before the code was compiled, simply by
executing the word -flash-led.

• Lines 3 and 4 define convenient names for the addresses of the file registers that
control IO-port B. Note the literal hexadecimal notation with the $ character. In
the PIC18F family, the special function registers for interacting with the MCU
hardware appear near the top of the 64k FlashForth memory space.

• Line 5 is a colon definition for the word init that sets up the peripheral hardware.
Here, we set pin RB0 as output. The actual command that does the setting is
mclr, which takes a bit-mask (00000001) and a register address ($ff93) and then
clears the register’s bits that have been set in the mask. Note the comment starting
with the backslash character. Although the comment text is sent to the MCU, it is
ignored. Note, also, the spaces delimiting words. That spaces after the colon and
around the semicolon are important.

• Line 6 is the definition that does the work of fiddling the LED pin. We fetch the
byte from the port B latch, toggle bit 0 and store the resulting byte back into the
port B latch.

5 INTRODUCTORY EXAMPLES 21

• Line 7 defines a word to pause for 500 milliseconds. Note the # character for a literal
decimal integer.

• Line 8 defines the “top-level” coordination word, which we have named main, fol-
lowing the C-programming convention. After initializing the relevant hardware, it
unconditionally loops, doing the output operation and waiting, each pass.

• Line 9 invokes the main word and runs the application. Pressing the Reset button
will trigger a hardware restart, kill the application and put the MCU back into a
state of listening to the serial port. Invoking a warm restart by typing Control-O

or selecting the Warm Restart menu action in ff-shell.tcl may be a more conve-
nient way to stop the application. Typing main, followed by Enter will restart the
application.

Instead of going to the bother of tinkering with the MCU IO Port, we could have taken
a short-cut and used the string writing capability of Forth to write a short version that
was closer the the operation of typical Hello World programs.

1 : greet -me ." Hello World" ;

2 greet -me

Before going on to more examples, it is good to know about the word empty. This word
will reset the dictionary and all of the allotted-memory pointers. Because FlashForth does
not allow you to redefine words that are already in the dictionary, later examples that
use the same names for their word definitions, may not compile without complaint if you
don’t clean up after each exercise.

5.2 Flash a LED on the PIC24FV32KA302

1 -flash -led

2 marker -flash -led

3 $02c8 constant trisb

4 $02cc constant latb

5 1 #15 lshift constant bit15

6 : init bit15 trisb mclr ; \ set pin as output

7 : do_output latb @ bit15 xor latb ! ; \ toggle the bit

8 : main init begin do_output #500 ms again ;

9 main

Notes on this program:

• This program for the 16-bit microcontroller is essentially the same as that for the
8-bit MCU, with different addresses for the port-control registers, of course. In
the PIC24/dsPIC30/dsPIC33 version of FlashForth, the special function registers
appear in the lowest 2k bytes of memory.

5 INTRODUCTORY EXAMPLES 22

• On line 5, we compute the bit pattern for selecting the MCU pin rather than writing
it explicitly. We start with a 1 in the least-significant bit of the 16-bit word and
then shift it left 15 places, to produce the binary value %1000000000000000

• On line 7, we use 16-bit fetch @ and store ! operations because the hardware special
function registers on this microcontroller are 16 bits wide.

5.3 Flash a LED on the ATmega328P

1 -flash -led -avr

2 marker -flash -led -avr

3 \ PB5 is Arduino digital pin 13.

4 \ There is a LED attached to this pin on the Freetronics Eleven.

5

6 $0024 constant ddrb

7 $0025 constant portb

8 1 #5 lshift constant bit5

9

10 : init bit5 ddrb mset ; \ set pin as output

11 : do_output portb c@ bit5 xor portb c! ; \ toggle the bit

12 : main init begin do_output #500 ms again ;

13

14 main

Notes on this program:

• Again, except for the specific registers and bits, this program is the same as for the
other MCUs. As for other high-level languages, we no longer have to think about
the specific machine architecture (usually).

• Because we are using load and store instructions, the special function registers start
at address $20.

5 INTRODUCTORY EXAMPLES 23

5.4 Set the cycle duration with a variable (PIC18FX6K22)

We enhance the initial demonstration by making the waiting period setable. Because of
the interactive FlashForth environment, the extra programming effort required is tiny.
The appearance of the code, however, looks a bit different because we have laid out the
colon definitions in a different style and have included more comments.

1 -flash -led -var

2 marker -flash -led -var

3 \ Flash a LED attached to pin RB0.

4

5 $ff8a constant latb

6 $ff93 constant trisb

7 variable ms_count \ use this for setting wait period.

8

9 : init (--)

10 1 trisb mclr \ want RB0 as output

11 ;

12

13 : do_output (--)

14 latb c@ 1 xor latb c! \ toggle RB0

15 ;

16

17 : wait (--)

18 ms_count @ ms

19 ;

20

21 : main (n --)

22 ms_count ! \ store for later use in wait

23 init

24 begin

25 do_output

26 wait

27 again

28 ;

29

30 #500 main \ exercise the application

Notes on this program:

• If the file has been sent earlier defining the application’s words, line 1 resets the
state of the dictionary to forget those previous definitions. This makes it fairly
convenient to have the source code open in an editing window (say, using emacs)
and to simply reprogram the MCU by resending the file (with the Send-File menu
item in ff-shell.tcl).

• Line 7 defines a 16-bit variable ms_count.

• Line 30 leaves the wait period on the stack before invoking the main word.

• On each pass through the wait word, the 16-bit value is fetched from ms_count and
is used to determine the duration of the pause.

5 INTRODUCTORY EXAMPLES 24

5.5 Hello, World: Morse code

Staying with the minimal hardware of just a single LED attached to pin RB0 on the
PIC18F26K22 or PIC18F46K22, we can make a proper “Hello World” application. The
following program makes use of Forth’s colon definitions so that we can spell the message
directly in source code and have the MCU communicate that message in Morse code.

1 -hello -world

2 marker -hello -world

3 \ Flash a LED attached to pin RB0 , sending a message in Morse -code.

4

5 $ff8a constant latb

6 $ff93 constant trisb

7 variable ms_count \ determines the timing.

8

9 : init (--)

10 1 trisb mclr \ want RB0 as output

11 1 latb mclr \ initial state is off

12 ;

13

14 : led_on 1 latb mset ;

15 : led_off 1 latb mclr ;

16 : gap ms_count @ ms ; \ pause period

17 : gap2 gap gap ;

18 : dit led_on gap led_off gap2 ;

19 : dah led_on gap2 led_off gap2 ;

20

21 \ Have looked up the ARRL CW list for the following letters.

22 : H dit dit dit dit ;

23 : e dit ;

24 : l dit dit ;

25 : o dah dah dah ;

26 : W dit dah dah ;

27 : r dit dah dit ;

28 : d dah dit dit ;

29

30 : greet (--)

31 H e l l o gap W o r l d gap2

32 ;

33

34 : main (n --)

35 ms_count ! \ store for later use in gap

36 init

37 begin

38 greet

39 again

40 ;

41

42 #100 main \ exercise the application

6 READ AND REPORT AN ANALOG VOLTAGE 25

6 Read and report an analog voltage

6.1 PIC18FX6K22

Use of the analog-to-digital converter (ADC) is a matter of, first, reading Section 17 of
the PIC18F2X/4XK22 datasheet [2], setting the relevant configuration/control registers
and then giving it a poke when we want a measurement. Again, the interactive nature of
FlashForth makes the reporting of the measured data almost trivial.

1 -read -adc

2 marker -read -adc

3 \ Read and report the analog value on RA0/AN0.

4

5 \ Registers of interest on the PIC18F26K22

6 $ffc4 constant adresh

7 $ffc3 constant adresl

8 $ffc2 constant adcon0

9 $ffc1 constant adcon1

10 $ffc0 constant adcon2

11 $ff92 constant trisa

12 $ff38 constant ansela

13

14 : init (--)

15 1 trisa mset \ want RA0 as input

16 1 ansela mset

17 %00000000 adcon1 c! \ ADC references Vdd , Vss

18 %10101111 adcon2 c! \ right -justified , 12-TAD acq -time , FRC

19 %00000001 adcon0 c! \ Power on ADC , looking at AN0

20 ;

21

22 : adc@ (-- u)

23 %10 adcon0 mset \ Start conversion

24 begin %10 adcon0 mtst 0= until \ Wait until DONE

25 adresl @

26 ;

27

28 : wait (--)

29 #500 ms

30 ;

31

32 : main (--)

33 init

34 begin

35 adc@ u.

36 wait

37 key? until

38 ;

39

40 \ Exercise the application , writing digitized values periodically

41 \ until any key is pressed.

42 decimal

43 main

Notes on this program:

• Although not much needs to be done to set up the ADC, you really should read the
ADC section of the datasheet to get the full details of this configuration.

• Lines 17 to 19 uses binary literals (with the % character) to show the configuration
bits explicitly.

6 READ AND REPORT AN ANALOG VOLTAGE 26

• Line 24 conditionally repeats testing of the DONE bit for the ADC.

• Line 25 fetches the full 10-bit result and leaves it on the stack for use after the adc@

word has finished. Because of the selected configuration of the ADC peripheral, the
value will be right-justified in the 16-bit cell.

• Line 35 invokes the adc@ word and prints the numeric result.

• Line 37 checks if a character has come in from the serial terminal. If so, the loop is
terminated and the main function returns control to the FlashForth interpreter.

6.2 PIC24FV32KA30X

The analog-to-digital converter on the PIC24-series microcontrollers is a little more com-
plex than that on the PIC18 series. There are more features to select and so there are
more registers and bits to set, however, the essential set-up tasks are similar. The follow-
ing script sets up some word definitions that were developed with a view to using them in
a larger program. The particular words are more verbose but also carry more information.

1 -read -adc

2 marker -read -adc

3 \ Read and report the analog values on AN0 through AN3.

4

5 \ Registers of interest on the PIC24FV32KA30x

6 $0084 constant ifs0

7

8 $02c0 constant trisa

9 $02c2 constant porta

10 $02c4 constant lata

11 $02c6 constant odca

12

13 $02c8 constant trisb

14 $02ca constant portb

15 $02cc constant latb

16 $02ce constant odcb

17

18 $0300 constant adc1buf0

19 $0340 constant ad1con1

20 $0342 constant ad1con2

21 $0344 constant ad1con3

22 $0348 constant ad1chs

23

24 $04e0 constant ansa

25 $04e2 constant ansb

26

27 $0770 constant pmd1

28

29 \ bit masks

30 $0001 constant mADC1MD \ pmd1

31 $0001 constant mDONE \ ad1con1

32 $0002 constant mSAMP

33 $8000 constant mADON

34 $2000 constant mAD1IF

35

36

37 : adc.init (--)

38 $0003 trisa mset \ want RA0 , RA1 as input

39 $0003 ansa mset

40 $0003 trisb mset

41 $0003 ansb mset

6 READ AND REPORT AN ANALOG VOLTAGE 27

42 mADC1MD pmd1 mclr \ ensure module enabled

43 $0470 ad1con1 ! \ 12-bit , auto -convert

44 $0000 ad1con2 ! \ ADC references Vdd , Vss

45 $9f00 ad1con3 ! \ ADRC , 31-TAD acq -time

46 $0000 ad1chs ! \ neg input is Vss , pos input AN0

47 mADON ad1con1 mset \ Power on ADC

48 mAD1IF ifs0 mclr

49 ;

50

51 : adc.close (--)

52 mADON ad1con1 mclr

53 mAD1IF ifs0 mclr

54 ;

55

56 : adc.select (u --) \ select positive input

57 $0003 and ad1chs ! \ limit selection to AN0 through AN3

58 ;

59

60 : adc@ (-- u)

61 mDONE ad1con1 mclr

62 mSAMP ad1con1 mset \ Start sampling

63 begin mDONE ad1con1 mtst until \ Wait until done.

64 adc1buf0 @

65 ;

66

67 : adc@.filter (-- u)

68 0 \ start of sum

69 8 for adc@ + next

70 8 /

71 ;

72

73 : wait (--)

74 #500 ms

75 ;

76

77 : adc.test (--)

78 adc.init

79 begin

80 0 adc.select adc@.filter u.

81 1 adc.select adc@.filter u.

82 cr

83 wait

84 key? until

85 adc.close

86 ;

87

88 \ Exercise the application , writing digitized values periodically

89 \ until any key is pressed.

90 \ decimal

91 \ adc.test

Notes on this program:

• This script was part of a larger application for the monitoring of 2 pressure trans-
ducers, hence the setting up of just RA0 and RA1 at the start of adc.init at lines
38–41.

• To save power the peripheral modules of a PIC24 are, by default, disabled. You
need to clear a module’s disable bit (line 42) to do anything with it, even setting
configuration registers. The (separate) power-on bit still needs to be set to start up
the converter.

7 COUNTING BUTTON PRESSES 28

7 Counting button presses

Example of sensing a button press, with debounce in software.

1 \ Use a push -button on RB0 to get user input.

2 \ This button is labelled S3 on the PICDEM2+ board.

3 -pb-demo

4 marker -pb-demo

5

6 $ff81 constant portb

7 $ff8a constant latb

8 $ff93 constant trisb

9

10 variable count

11

12 : init (--)

13 %01 trisb mset \ RB0 as input

14 %10 trisb mclr \ RB1 as output

15 %10 latb mclr

16 ;

17 : RB1toggle (--)

18 latb c@ %10 xor latb c!

19 ;

20 : RB0@ (-- c)

21 portb c@ %01 and

22 ;

23 : button? (-- f)

24 \ Check for button press , with software debounce.

25 \ With the pull -up in place , a button press will give 0.

26 RB0@ if

27 0

28 else

29 #10 ms

30 RB0@ if 0 else -1 then

31 then

32 ;

33

34 : main (--)

35 0 count !

36 init

37 begin

38 button? if

39 RB1toggle

40 count @ 1+ count !

41 count @ .

42 #200 ms \ allow time to release button

43 then

44 cwd

45 key? until

46 ;

47

48 main \ exercise the application

Notes on this program:

• The main word clears the count variable, calls init to set up the hardware and
then loops, polling RB0 and incrementing value of the count variable only when the
button gets pressed.

• If the pause after acknowledging the button press (line 42) is too long, we may lose
later button press events. This depends on how frantically we press S3.

7 COUNTING BUTTON PRESSES 29

• Line 44 resets the watch-dog timer on each pass of the main loop. If we don’t press
the RB0 button for a long time, the main loop would not otherwise pause and clear
the watch-dog timer. The watch-dog timer is cleared inside the ms word, however,
if the timer expires before being cleared, the microcontroller would be reset and the
FlashForth interpreter would restart.

8 COUNTING BUTTON PRESSES VIA INTERRUPTS 30

8 Counting button presses via interrupts

Instead of polling the RB0 pin attached to the push button, as in the previous example,
let’s set up the hardware interrupt mechanism to invoke the increment action for us.

1 \ Use a push -button on RB0 to get user input , via an interrupt.

2 \ This button is labelled S3 on the PICDEM2+ board.

3 \ Don ’t have J6 connected because the LED on RB0 loads the pull -up.

4

5 -pb-interrupt

6 marker -pb -interrupt

7

8 $ff93 constant trisb

9 $fff2 constant intcon

10 $fff1 constant intcon2

11

12 variable count

13 variable last -count

14

15 : int0 -irq

16 [i

17 %10 intcon mtst \ INT0IF

18 if

19 count @ 1+ count !

20 %10 intcon mclr

21 then

22 i]

23 ;i

24

25 : init (--)

26 %01 trisb mset \ RB0 as input , a button press will give 0.

27 %01000000 intcon2 mclr \ interrupt on falling edge

28 [’] int0 -irq 0 int! \ install service word

29 %10 intcon mclr \ INT0IF cleared

30 %10000 intcon mset \ INT0 interrupt enable

31 ;

32

33 : main (--)

34 0 count !

35 init

36 begin

37 count @ last -count @ - \ change?

38 if

39 count @ dup last -count ! .

40 then

41 cwd

42 key? until

43 ;

44

45 main \ exercise the application

Notes on this program:

• Again, we use the variable named count as the variable to be incremented on press-
ing the button that pulls RB0 low. The actual increment is done on line 19, inside
the interrupt service word int0-irq. The second variable, last-count, is used on
line 36 in the main word, to detect when the count variable changes.

• The init word sets up the bits to enable the INT0 external interrupt to fire on a
falling edge at RB0.

8 COUNTING BUTTON PRESSES VIA INTERRUPTS 31

• On line 28 in the init word, the execution token for our interrupt service word
is stored as the high-priority interrupt vector. Because FlashForth supports only
high-priority interrupts, the 0 is a dummy value but is still expected by the int!

word.

• Inside the interrupt-service word, we need to test the INT0IF interrupt flag to see if
it is our interrupt to handle and, if it is, do the appropriate work (of incrementing
the count variable) and clearing the interrupt flag. If you enable several interrupt
sources, you need to provide a test and action for each.

• The main word clears the count variable, calls init to set up the interrupt mecha-
nism and then loops, emitting the value of the count variable only when it changes.

9 SCANNING A 4X3 MATRIX KEYPAD 32

9 Scanning a 4x3 matrix keypad

We connect a 4x3 matrix keypad to PORTB, using RB0, RB1 and RB2 to drive the
columns while sensing the rows with RB4 through RB7. The schematic figure below
shows the arrangement of keys and pins.

1 2 3

4 5 6

7 8 9

* 0 #

pin 2, RB7

pin 7, RB6

pin 6, RB5

pin 4, RB4

pin 3 1 5
RB0 RB1 RB2

To minimize hardware, we have used the weak pull-ups on PORTB. Pressing a key while
its column wire is held high does nothing, however, pressing a key on a column that is
held low will result in its row being pulled low.

1 -keypad

2 marker -keypad

3 \ Display key presses from a 4x3 (telephone -like) keypad

4 \ on PIC18F26K22 -I/SP

5

6 $ff81 constant portb

7 $ff8a constant latb

8 $ff93 constant trisb

9 $ff39 constant anselb

10 $ff61 constant wpub

11 $fff1 constant intcon2

12

13 : init (--)

14 0 latb c!

15 %00000000 anselb c! \ set as all digital I/O pins

16 %11110000 trisb c! \ RB7 -4 as input , RB3 -0 as output

17 %11110000 wpub c! \ pull -ups on RB7 -4

18 %10000000 intcon2 mclr \ turn on pull -ups

19 ;

20

21 flash

22 create key_chars

23 char 1 c, char 2 c, char 3 c,

24 char 4 c, char 5 c, char 6 c,

25 char 7 c, char 8 c, char 9 c,

26 char * c, char 0 c, char # c,

27 create key_scan_bytes

28 $7e c, $7d c, $7b c,

29 $be c, $bd c, $bb c,

30 $de c, $dd c, $db c,

31 $ee c, $ed c, $eb c,

32 ram

33

34 : scan_keys (-- c)

35 \ Return ASCII code of key that is pressed

36 #12 for

37 key_scan_bytes r@ + c@

38 dup

39 latb c!

40 portb c@

41 = if

42 \ key must be pressed to get a match

43 key_chars r@ + c@

44 rdrop

9 SCANNING A 4X3 MATRIX KEYPAD 33

45 exit

46 then

47 next

48 0 \ no key was pressed

49 ;

50

51 : keypad@ (-- c)

52 \ Read keypad with simple debounce.

53 \ ASCII code is left on stack.

54 \ Zero is returned for no key pressed or inconsistent scans.

55 scan_keys dup

56 #20 ms

57 scan_keys

58 = if exit else drop then

59 0 \ inconsistent scan results

60 ;

61

62 : main (--)

63 init

64 begin

65 keypad@

66 dup

67 0= if

68 drop \ no key pressed

69 else

70 emit

71 #300 ms \ don ’t repeat key too quickly

72 then

73 key? until

74 ;

Notes on this program:

• In lines 21–31, we make use of character arrays to store (into the program memory)
the the ASCII code and the scan code for each key. The scan code is made up of
the 3-bit column pattern to be applied to RB2-RB0 and the resulting 4-bit row-
sense pattern (RB7-RB4) expected for the particular key if it is pressed. RB3 is
maintained high (and is of no consequence) for this 3-column keypad, however, it
would be used for a 4x4 keypad.

• Lines 36 and 47 make use of the for–next control construct to work through the set
of 12 scan codes

• We should go further by making use a state-machine and also keeping track of the
last key pressed.

10 BASE WORDS FOR AN I2C MASTER 34

10 Base words for an I2C master

Here are some words for using I2C (or Two-wire) peripherals for each of the microcon-
trollers in master mode. These words provide abstract the hardware registers and bits to
provide a common vocabulary for the interaction with I2C slave devices.

10.1 PIC18FX6K22

1 \ i2c -base -k22.txt

2 \ Low -level words for I2C master on PIC18F26K22

3 \

4 \ Modelled on the original i2c -base.txt for PIC18 ,

5 \ i2c -twi.frt from amforth and

6 \ the datasheet for Microchip PIC18F26K22.

7 \ Peter J. 2014 -11 -08

8

9 -i2c -base -k22

10 marker -i2c -base -k22

11 hex ram

12

13 \ Registers related to I2C operation of MSSP1

14 $ff3a constant anselc

15 $ff82 constant portc

16 $ff8b constant latc

17 $ff94 constant trisc

18 $ff9e constant pir1

19 $ffc5 constant ssp1con2

20 $ffc6 constant ssp1con1

21 $ffc7 constant ssp1stat

22 $ffc8 constant ssp1add

23 $ffc9 constant ssp1buf

24 $ffca constant ssp1msk

25 $ffcb constant ssp1con3

26

27 \ Masks for bits

28 %00000001 constant mSEN \ in ssp1con2

29 %00000010 constant mRSEN

30 %00000100 constant mPEN

31 %00001000 constant mRCEN

32 %00010000 constant mACKEN

33 %00100000 constant mACKDT

34 %01000000 constant mACKSTAT

35 %00100000 constant mSSP1EN \ in ssp1con1

36 %00000001 constant mBF \ in ssp1stat

37 %00001000 constant mSSP1IF \ in pir1

38

39 : i2c.init (--)

40 %00001000 ssp1con1 c! \ Master mode

41 [Fcy #100 / 1-] literal ssp1add c! \ Set clock frequency to 100 kHz

42 mSSP1IF pir1 mclr \ Clear interrupt bit

43 %00011000 trisc mset \ SCL1 on RC3 , SDA1 on RC4

44 %00011000 anselc mclr

45 mSSP1EN ssp1con1 mset \ Enable hardware

46 ;

47

48 : i2c.close (--)

49 mSSP1EN ssp1con1 mclr

50 mSSP1IF pir1 mclr

51 ;

52

53 : i2c.wait (--) \ Wait for interrupt flag and clear it

54 begin mSSP1IF pir1 mtst until

55 mSSP1IF pir1 mclr

56 ;

57

58 : i2c.idle? (-- f)

10 BASE WORDS FOR AN I2C MASTER 35

59 %00011111 ssp1con2 mtst \ ACKEN RCEN REN RSEN SEN

60 %100 ssp1stat mtst \ R/^W

61 or 0=

62 ;

63

64 : i2c.start (--) \ Send start condition

65 begin i2c.idle? until

66 mSSP1IF pir1 mclr

67 mSEN ssp1con2 mset

68 i2c.wait

69 ;

70

71 : i2c.rsen (--) \ Send repeated start condition

72 mSSP1IF pir1 mclr

73 mRSEN ssp1con2 mset

74 i2c.wait

75 ;

76

77 : i2c.stop (--) \ Send stop condition

78 mSSP1IF pir1 mclr

79 mPEN ssp1con2 mset

80 i2c.wait

81 ;

82

83 : i2c.buf.full? (-- f)

84 mBF ssp1stat mtst

85 ;

86

87 \ Write one byte to bus , leaves ACK bit.

88 \ A value of 0 indicates ACK was received from slave device.

89 : i2c.c! (c -- f)

90 begin i2c.buf.full? 0= until

91 ssp1buf c!

92 begin i2c.buf.full? 0= until

93 begin i2c.idle? until

94 ssp1con2 c@ mACKSTAT and

95 ;

96

97 \ Send ack bit.

98 : i2c.ack.seq (--)

99 mACKEN ssp1con2 mset

100 begin mACKEN ssp1con2 mtst 0= until

101 ;

102

103 \ Read one byte and ack for another.

104 : i2c.c@.ack (-- c)

105 mRCEN ssp1con2 mset

106 begin i2c.buf.full? until

107 mACKDT ssp1con2 mclr i2c.ack.seq \ ack

108 ssp1buf c@

109 ;

110

111 \ Read one last byte.

112 : i2c.c@.nack (-- c)

113 mRCEN ssp1con2 mset

114 begin i2c.buf.full? until

115 mACKDT ssp1con2 mset i2c.ack.seq \ nack

116 ssp1buf c@

117 ;

118

119 \ Address slave for writing , leaves true if slave ready.

120 : i2c.addr.write (7-bit -addr -- f)

121 1 lshift 1 invert and \ Build full byte with write -bit as 0

122 i2c.start i2c.c! 0=

123 ;

124

125 \ Address slave for reading , leaves true if slave ready.

126 : i2c.addr.read (7-bit -addr -- f)

127 1 lshift 1 or \ Build full byte with read -bit as 1

128 i2c.start i2c.c! 0=

129 ;

10 BASE WORDS FOR AN I2C MASTER 36

130

131 \ Detect presence of device , leaving true if device present , 0 otherwise.

132 \ We actually fetch a byte if the slave has acknowledged , then discard it.

133 : i2c.ping? (7-bit -addr -- f)

134 i2c.addr.read if i2c.c@.nack drop true else false then

135 ;

10.2 PIC24FV32KA30X

1 \ i2c -base -pic24fv32ka30x.txt

2 \ Low -level words for I2C master on PIC24FV32KA302 and KA301

3 \

4 \ Modelled on i2c -base.txt for PIC18 , i2c -twi.frt from amforth

5 \ the Microchip PIC24 Family Reference Manual

6 \ and the datasheet for PIC24FV32KA304 family.

7 \ Peter J. 2015 -09 -23

8

9 -i2c -base

10 marker -i2c -base

11 hex ram

12

13 \ Registers related to I2C operation of MSSP1

14 $0086 constant ifs1

15 $0200 constant i2c1rcv

16 $0202 constant i2c1trn

17 $0204 constant i2c1brg

18 $0206 constant i2c1con

19 $0208 constant i2c1stat

20 $020a constant i2c1add

21 $020c constant i2c1msk

22 $02c8 constant trisb

23 $02ca constant portb

24 $02cc constant latb

25 $02ce constant odcb

26 $04e2 constant ansb

27 $0770 constant pmd1

28

29 \ Masks for bits

30 $8000 constant mI2CEN \ in i2c1con

31 %000001 constant mSEN

32 %000010 constant mRSEN

33 %000100 constant mPEN

34 %001000 constant mRCEN

35 %010000 constant mACKEN

36 %100000 constant mACKDT

37 $8000 constant mACKSTAT \ in i2c1stat

38 $4000 constant mTRSTAT

39 $0400 constant mBCL

40 $0080 constant mIWCOL

41 $0040 constant mI2COV

42 %0001 constant mTBF

43 %0010 constant mRBF

44 %0010 constant mMI2C1IF \ in ifs1

45

46 $0100 constant mRB8 \ SCL1 on RB8

47 $0200 constant mRB9 \ SDA1 on RB9

48

49 : i2c.init (--)

50 $80 pmd1 mclr \ Enable the I2C1 module

51 [Fcy #100 / Fcy #10000 / - 1-] literal i2c1brg c! \ Set clock to 100 kHz

52 mMI2C1IF ifs1 mclr \ Clear interrupt bit for master operation

53 %1100000000 trisb mset \ SCL1 on RB8 , SDA1 on RB9

54 %1100000000 odcb mset

55 mI2CEN i2c1con mset \ Enable hardware

10 BASE WORDS FOR AN I2C MASTER 37

56 ;

57

58 : i2c.close (--)

59 mI2CEN i2c1con mclr

60 mMI2C1IF ifs1 mclr

61 ;

62

63 : i2c.bus.reset (--)

64 \ Manually reset the slave devices.

65 \ For use when a slave just won ’t let SDA1 go.

66 i2c.close

67 mRB9 trisb mset \ leave SDA1 float

68 mRB9 odcb mset

69 mRB8 trisb mclr \ drive SCL1 with digital output

70 mRB8 odcb mset

71 9 for

72 mRB8 latb mclr 1 ms

73 mRB8 latb mset 1 ms

74 next

75 \ stop condition

76 mRB8 latb mclr

77 mRB9 trisb mclr

78 mRB9 latb mclr 1 ms

79 mRB8 latb mset

80 mRB9 latb mset 1 ms

81 \ release bus

82 mRB8 trisb mset

83 mRB9 trisb mset

84 ;

85

86 : i2c.wait (--) \ Wait for interrupt flag and clear it

87 begin mMI2C1IF ifs1 mtst until

88 mMI2C1IF ifs1 mclr

89 ;

90

91 : i2c.idle? (-- f)

92 %00011111 i2c1con mtst \ ACKEN RCEN REN RSEN SEN

93 0=

94 ;

95

96 : i2c.start (--) \ Send start condition

97 begin i2c.idle? until

98 mMI2C1IF ifs1 mclr

99 mSEN i2c1con mset

100 i2c.wait

101 ;

102

103 : i2c.rsen (--) \ Send repeated start condition

104 mMI2C1IF ifs1 mclr

105 mRSEN i2c1con mset

106 i2c.wait

107 ;

108

109 : i2c.stop (--) \ Send stop condition

110 mMI2C1IF ifs1 mclr

111 mPEN i2c1con mset

112 i2c.wait

113 ;

114

115 : i2c.tbuf.full? (-- f)

116 mTBF i2c1stat mtst

117 ;

118

119 : i2c.rbuf.full? (-- f)

120 mRBF i2c1stat mtst

121 ;

122

123 \ Write one byte to bus , leaves ACK bit.

124 \ A value of 0 indicates ACK was received from slave device.

125 : i2c.c! (c -- f)

126 begin i2c.tbuf.full? 0= until

10 BASE WORDS FOR AN I2C MASTER 38

127 mMI2C1IF ifs1 mclr

128 i2c1trn c!

129 \ We wait for the interrupt because just waiting for the buffer

130 \ to be empty is unreliable if we look too soon.

131 i2c.wait

132 begin i2c.idle? until

133 i2c1stat @ mACKSTAT and

134 ;

135

136 \ Send ack bit.

137 : i2c.ack.seq (--)

138 mACKEN i2c1con mset

139 begin mACKEN i2c1con mtst 0= until

140 ;

141

142 \ Read one byte and ack for another.

143 : i2c.c@.ack (-- c)

144 mRCEN i2c1con mset

145 begin i2c.rbuf.full? until

146 mACKDT i2c1con mclr i2c.ack.seq \ ack

147 i2c1rcv c@

148 ;

149

150 \ Read one last byte.

151 : i2c.c@.nack (-- c)

152 mRCEN i2c1con mset

153 begin i2c.rbuf.full? until

154 mACKDT i2c1con mset i2c.ack.seq \ nack

155 i2c1rcv c@

156 ;

157

158 \ Address slave for writing , leaves true if slave ready.

159 : i2c.addr.write (7-bit -addr -- f)

160 1 lshift 1 invert and \ Build full byte with write -bit as 0

161 i2c.start i2c.c! 0=

162 ;

163

164 \ Address slave for reading , leaves true if slave ready.

165 : i2c.addr.read (7-bit -addr -- f)

166 1 lshift 1 or \ Build full byte with read -bit as 1

167 i2c.start i2c.c! 0=

168 ;

169

170 \ Detect presence of device ,

171 \ leaving true if device present , 0 otherwise.

172 \ We actually fetch a byte if the slave has acknowledged.

173 : i2c.ping? (7-bit -addr -- f)

174 i2c.addr.read if i2c.c@.nack drop true else false then

175 ;

10.3 ATmega328P

1 \ i2c -base -avr.txt

2 \ Low -level words for TWI/I2C on Atmega328P.

3 \

4 \ Modelled on i2c -twi.frt from amforth ,

5 \ i2c_base.txt for FlashForth on PIC18

6 \ and the Atmel datasheet , of course.

7 \ Peter J. 2014 -10 -27

8

9 -i2c -base

10 marker -i2c -base

11 hex ram

12

10 BASE WORDS FOR AN I2C MASTER 39

13 \ Two -Wire -Interface Registers

14 $b8 constant TWBR

15 $b9 constant TWSR

16 $bb constant TWDR

17 $bc constant TWCR

18

19 \ Bits in the Control Register

20 %10000000 constant mTWINT

21 %01000000 constant mTWEA

22 %00100000 constant mTWSTA

23 %00010000 constant mTWSTO

24 %00001000 constant mTWWC

25 %00000100 constant mTWEN

26 %00000001 constant mTWIE

27

28 : i2c.init (--) \ Set clock frequency to 100kHz

29 %11 TWSR mclr \ prescale value = 1

30 [Fcy #100 / #16 - 2/] literal TWBR c!

31 mTWEN TWCR mset

32 ;

33

34 : i2c.wait (--) \ Wait for operation to complete

35 \ When TWI operations are done , the hardware sets

36 \ the TWINT interrupt flag , which we will poll.

37 begin TWCR c@ mTWINT and until

38 ;

39

40 : i2c.start (--) \ Send start condition

41 [mTWINT mTWEN or mTWSTA or] literal TWCR c!

42 i2c.wait

43 ;

44

45 : i2c.rsen (--) \ Send repeated start condition

46 i2c.start \ AVR doesn ’t distinguish

47 ;

48

49 : i2c.stop (--) \ Send stop condition

50 [mTWINT mTWEN or mTWSTO or] literal TWCR c!

51 ;

52

53 \ Write one byte to bus , returning 0 if ACK was received , -1 otherwise.

54 : i2c.c! (c -- f)

55 i2c.wait \ Must have TWINT high to write data

56 TWDR c!

57 [mTWINT mTWEN or] literal TWCR c!

58 i2c.wait

59 \ Test for arrival of an ACK depending on what was sent.

60 TWSR c@ $f8 and $18 xor 0= if 0 exit then \ SLA+W

61 TWSR c@ $f8 and $28 xor 0= if 0 exit then \ data byte

62 TWSR c@ $f8 and $40 xor 0= if 0 exit then \ SLA+R

63 -1 \ Something other than an ACK resulted

64 ;

65

66 \ Read one byte and ack for another.

67 : i2c.c@.ack (-- c)

68 [mTWINT mTWEN or mTWEA or] literal TWCR c!

69 i2c.wait

70 TWDR c@

71 ;

72

73 \ Read one last byte.

74 : i2c.c@.nack (-- c)

75 [mTWINT mTWEN or] literal TWCR c!

76 i2c.wait

77 TWDR c@

78 ;

79

80 \ Address slave for writing , leaving true if slave ready.

81 : i2c.addr.write (7-bit -addr -- f)

82 1 lshift 1 invert and \ Build full byte with write -bit as 0

83 i2c.start i2c.c! if false else true then

10 BASE WORDS FOR AN I2C MASTER 40

84 ;

85

86 \ Address slave for reading , leaving true if slave ready.

87 : i2c.addr.read (7-bit -addr -- f)

88 1 lshift 1 or \ Build full byte with read -bit as 1

89 i2c.start i2c.c! if false else true then

90 ;

91

92 \ Detect presence of device , leaving true if slave responded.

93 \ If the slave ACKs the read request , fetch one byte only.

94 : i2c.ping? (7-bit -addr -- f)

95 1 lshift 1 or \ Build full byte with read -bit as 1

96 i2c.start i2c.c! 0= if i2c.c@.nack drop true else false then

97 ;

10.4 Notes on using the words

• The word i2c.init is used to set up the I2C master peripheral for further activities.

• I2C conversations begin by addressing a slave device for either reading or writing.
The words i2c.addr.read and i2c.addr.write are provided for this waking of
the slave. They leave a flag on the stack to indicate whether the slave device
acknowledged being addressed. If the slave device responded appropriately, you
may proceed to read or write bytes.

• There are two words for reading a byte from the bus. i2c.c@.ack reads a byte and
asserts an acknowledge (ACK) to indicate to the slave device that another byte will
be read subsequently. i2c.c@.nack reads a byte and asserts a NACK to indicate
to the slave that no more bytes are wanted.

• The word to sending a byte to the slave device is i2c.c!. This word leaves a flag
to indicate the state of the ACK bit following the action of sending the byte. If the
slave asserted ACK, the flag will be 0. You may drop this flag if it not of interest
to you.

• There are lower-level words i2c.start, i2c.rsen and i2c.stop to assert start,
restart and stop conditions respectively. These are used within the higher-level
words mentioned above.

• The utility word i2c.ping? attempts to address a slave and read a byte. It leaves
true if the slave responds, else false.

• Sometimes when tinkering with a new I2C device, you can get into a state of con-
fusion such that the slave device will end up in some intermediate state waiting
for clock signals.3 In this state, the slave device will no longer respond in a way
that the master peripheral understands. Rather than cycle the power to reset the
slave device, it may be convenient to force the clocking of the data bits through the
bus and get the slave device back into an idle state. The word i2c.reset.bus (in
i2c-base-pic24fv32ka30x.txt) is provided to automate this forced clocking.

3This happens more often than I would like to admit.

10 BASE WORDS FOR AN I2C MASTER 41

10.5 Detecting I2C devices

Building on the base words for a particular microcontroller, the following program works
on all of the microcontrollers discussed in this tutorial guide. It is convenient to run this
program to to see if the device of interest is responding. There’s no point trying to have
a conversation with a device that doesn’t respond to being addressed.

1 \ i2c -detect.txt

2 \ Detect presence of all possible devices on I2C bus.

3 \ Only the 7 bit address schema is supported.

4 \

5 \ Copied from amForth distribution (lib/hardware /)

6 \ and lightly edited to suit FlashForth 5.0 on AVR.

7 \ Builds upon i2c -base -xxxx.txt and doloop.txt.

8 \ Peter J. 2014 -10 -27

9

10 -i2c -detect

11 marker -i2c -detect

12

13 \ not all bitpatterns are valid 7bit i2c addresses

14 : i2c.7 bitaddr? (a -- f) $7 $78 within ;

15

16 : i2c.detect (--)

17 base @ hex

18 \ header line

19 cr 5 spaces $10 0 do i 2 u.r loop

20 $80 0 do

21 i $0f and 0= if

22 cr i 2 u.r [char] : emit space

23 then

24 i i2c.7 bitaddr? if

25 i i2c.ping? if \ does device respond?

26 i 2 u.r

27 else

28 ." -- "

29 then

30 else

31 ." "

32 then

33 loop

34 cr base !

35 ;

36

37 \ With a lone Microchip TC74A0 sitting on the bus ,

38 \ the output looks like

39 \ i2c.init ok<$,ram >

40 \ i2c.detect

41 \ 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

42 \ 00 : -- -- -- -- -- -- -- -- --

43 \ 10 : -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

44 \ 20 : -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

45 \ 30 : -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

46 \ 40 : -- -- -- -- -- -- -- -- 48 -- -- -- -- -- -- --

47 \ 50 : -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

48 \ 60 : -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

49 \ 70 : -- -- -- -- -- -- -- --

50 \ ok <$,ram >

51 \ i2c.stop ok<$,ram >

11 USING I2C TO GET TEMPERATURE MEASUREMENTS 42

11 Using I2C to get temperature measurements

Using the words in i2c-base-k22.txt to control the MSSP peripheral in master mode,
one may talk to the TC74A5 temperature measurement chip on the PICDEM 2 PLUS
and report sensor temperature.

1 \ Read temperature from TC74 on PICDEM2+ board with PIC18F46K22 -I/P.

2 \ Modelled on Mikael Nordman ’s i2c_tcn75.txt.

3 \ This program requires i2c -base -k22.txt to be previously loaded.

4 -read -tc74

5 marker -read -tc74

6

7 %1001101 constant addr -TC74A5 \ 7-bit address for the chip

8

9 : tc74 -init (--)

10 \ Selects the temperature register for subsequent reads.

11 addr -TC74A5 i2c.addr.write if 0 i2c.c! drop then i2c.stop

12 ;

13 : sign -extend (c -- n)

14 \ If the TC74 has returned a negative 8-bit value ,

15 \ we need to sign extend to 16-bits with ones.

16 dup $7f > if $ff80 or then

17 ;

18 : degrees@ (-- n)

19 \ Wake the TC74 and receive its register value.

20 addr -TC74A5 i2c.addr.read if i2c.c@.nack sign -extend else 0 then

21 ;

22 : tc74 -main (--)

23 i2c.init

24 tc74 -init

25 begin

26 degrees@ .

27 #1000 ms

28 key? until

29 ;

30

31 \ Now , report temperature in degrees C

32 \ while we warm up the TC74 chip with our fingers ...

33 decimal tc74 -main

With a Saleae Logic Analyser connected to the pins of the TC74A5, we can see the I2C
signals as a result of calling the tc74-init word.

A little later on, the degrees@ word is invoked. The returned binary value of 0b00010101
corresponds to the very pleasant 21oC that exists in the back shed as this text is being
written.

12 MAKING HIGH-RESOLUTION VOLTAGE MEASUREMENTS 43

12 Making high-resolution voltage measurements

The Microchip MCP3422 is a Σ∆-ADC that can connected via I2C port. This neat little
converter can measure voltages with a resolution of 18 bits (at the lowest data rate of
3.75 samples per second) and includes a programmable gain amplifier [9]. Being available
in a surface-mount package only, it was convenient to use a prebuilt evaluation board, the
green board between the home-built FlashForth demo board and the fixed-voltage supply
board. The MCP3422 evaluation board is connected to and powered from the I2C header
on the FlashForth demo board. Separately, the fixed-voltage supply board provides the
measurement voltage to channel 1 of the MCP3422 via a potentiometer that is set to give
1.024 V, according to my (fairly cheap) multimeter.

1 \ mcp3422 -2016. txt

2 \ Play with mcp3422 eval board.

3 \ PJ, 21-Oct -2013

4 \ 28-Apr -2014 PIC18F26K22 version

5 \ 27-Jan -2016 update to use latest i2c words

6 \ Needs i2c -base -k22.txt and math.txt (to get m*/).

7

8 -mcp3422

9 marker -mcp3422

10

11 $68 constant addr -mcp3422 \ 7-bit address

12

13 : mcp3422 -init (--)

14 \ $9c is config for 18-bit continuous conversions of ch 1

15 addr -mcp3422 i2c.addr.write if $9c i2c.c! drop then i2c.stop

16 ;

17

18 : mcp3422@ (-- d f) \ Read the 18-bit result as 3 bytes

19 addr -mcp3422 i2c.addr.read

20 if

21 i2c.c@.ack \ only 2 bits in first byte

22 dup $3 > if $fffa or then \ sign -extend to full cell

23 i2c.c@.ack $8 lshift i2c.c@.ack or \ next two bytes into one cell

24 swap \ leave double result

25 i2c.c@.nack $80 and 0= \ leave true if result is latest

26 else

27 0 0 0 \ device did not ack on address

12 MAKING HIGH-RESOLUTION VOLTAGE MEASUREMENTS 44

28 then

29 ;

30

31 : microvolts (d1 -- d2)

32 \ The least -significant bit corresponds to 15.625 microvolts

33 #125 #8 m*/

34 ;

35

36 : (d.3) (d --)

37 swap over dabs

38 <# # # # [char] . hold #s rot sign #>

39 ;

40

41 : report (d f --) \ Assuming decimal , print millivolt value

42 cr if ." new " else ." old " then

43 microvolts (d.3) type space ." mV "

44 ;

45

46 : mcp3422 -run (--)

47 decimal

48 i2c.init mcp3422 -init

49 begin

50 mcp3422@ report

51 #1000 ms

52 key? until

53 hex

54 ;

Notes on this program:

• mcp3422-run is the top-level word that initializes the hardware, then periodically
reads the MCP3422 data and reports the voltage (in millivolts) to the user terminal.
The program runs until a key is pressed.

• The converted value is read from the MCP3422 as and 18-bit value in 2-complement
format. The word mcp3422@ reads the data as three bytes from the I2C port and
then shuffles it into a double-cell value that is left on the stack, along with a flag to
indicate whether the value sent by the MCP3422 happened to be the latest data. If
the MCP3422 did not respond to being addressed, zeros will be left on the stack in
place of the expected data.

• The value is scaled to microvolts and then the resultant double value is output using
the pictured numeric output to have 3 decimal places so that it looks like a millivolt
reading. Several lines from the terminal look like the following:

new 1028.031 mV

new 1028.062 mV

new 1028.046 mV

• This program builds upon the i2c-base-k22 words in order to communicate with
the MCP3422. The code for scaling of the measured data requires the mixed-scale
word m*/ from the file math.txt provided by FlashForth.

13 AN I2C SLAVE EXAMPLE 45

13 An I2C slave example

The MSSP in the PIC18F26K22 can also be used in slave mode. Here, the FlashForth
demo board is presented as an I2C slave device to an Aardvark serial interface, acting as
master. The UART communication is provided by a Future Technology Devices Interna-
tional USB TTL-serial cable.

The core of the program is the i2c service word which is invoked each time a serial-port
event is flagged by the SSPIF bit in the PIR1 flag register. This word is an implementation
of the state look-up approach detailed in the Microchip Application Note AN734 [10]. The
rest of the program is there to provide (somewhat) interesting data for the I2C master
to read and to do something (light a LED) when the master writes suitable data to the
slave.

1 -i2c -slave

2 marker -i2c -slave

3 \ Make the FlashForth 26K22 demo board into an I2C slave.

4 \ An I2C master can read and write to a buffer here ,

5 \ the least -significant bit of the first byte controls

6 \ the LED attached to pin RB0.

7 \

8 \ Needs core.txt loaded.

9

10 $ff81 constant portb

11 $ff82 constant portc

12 $ff8a constant latb

13 $ff93 constant trisb

14 $ff94 constant trisc

15 $ff3a constant anselc

16

17 : led_on (--)

18 %00000001 latb mset

19 ;

20 : led_off (--)

21 %00000001 latb mclr

22 ;

23 : err_led_on (--)

24 %00000010 latb mset

25 ;

26 : err_led_off (--)

27 %00000010 latb mclr

28 ;

29

30 \ Establish a couple of buffers in RAM , together with index variables.

31 ram

32 8 constant buflen

33 \ Receive buffer for incoming I2C data.

34 create rbuf buflen allot

35 variable rindx

36 : init_rbuf (--)

37 rbuf buflen erase

38 0 rindx !

39 ;

40 : incr_rindx (--) \ increment with wrap -around

41 rindx @ 1 +

42 dup buflen = if drop 0 then

43 rindx !

44 ;

45 : save_to_rbuf (c --)

46 rbuf rindx @ + c!

47 incr_rindx

48 ;

49

50 \ Send buffer with something interesting for the I2C master to read.

13 AN I2C SLAVE EXAMPLE 46

51 create sbuf buflen allot

52 variable sindx

53 : incr_sindx (--) \ increment with wrap -around

54 sindx @ 1 +

55 dup buflen = if drop 0 then

56 sindx !

57 ;

58 : init_sbuf (--) \ fill with counting integers , for interest

59 buflen

60 for

61 r@ 1+

62 sbuf r@ + c!

63 next

64 0 sindx !

65 ;

66

67 \ I2C -related definitions and code

68 $ffc5 constant sspcon2

69 $ffc6 constant sspcon1

70 $ffc7 constant sspstat

71 $ffc8 constant sspadd

72 $ffc9 constant sspbuf

73 $ff9e constant pir1

74

75 \ PIR1 bits

76 %00001000 constant sspif

77

78 \ SSPSTAT bits

79 %00000001 constant bf

80 %00000100 constant r_nw

81 %00001000 constant start_bit

82 %00010000 constant stop_bit

83 %00100000 constant d_na

84 %01000000 constant cke

85 %10000000 constant smp

86

87 d_na start_bit or r_nw or bf or constant stat_mask

88

89 \ SSPCON1 bits

90 %00010000 constant ckp

91 %00100000 constant sspen

92 %01000000 constant sspov

93 %10000000 constant wcol

94

95 \ SSPCON2 bits

96 %00000001 constant sen

97

98 : i2c_init (--)

99 %11000 anselc mclr \ enable digital -in on RC3 ,RC4 (SCL1 ,SDA1)

100 %00011000 trisc mset \ RC3==SCL RC4==SDA

101 %00000110 sspcon1 c! \ Slave mode with 7-bit address

102 sen sspcon2 mset \ Clock stretching enabled

103 smp sspstat mset \ Slew -rate disabled

104 $52 1 lshift sspadd c! \ Slave address

105 sspen sspcon1 mset \ Enable MSSP peripheral

106 ;

107

108 : release_clock (--)

109 ckp sspcon1 mset

110 ;

111

112 : i2c_service (--)

113 \ Check the state of the I2C peripheral and react.

114 \ See App Note 734 for an explanation of the 5 states.

115 \

116 \ State 1: i2c write operation , last byte was address.

117 \ D_nA=0, S=1, R_nW=0, BF=1

118 sspstat c@ stat_mask and %00001001 =

119 if

120 sspbuf @ drop

121 init_rbuf

13 AN I2C SLAVE EXAMPLE 47

122 release_clock

123 exit

124 then

125 \ State 2: i2c write operation , last byte was data.

126 \ D_nA=1, S=1, R_nW=0, BF=1

127 sspstat c@ stat_mask and %00101001 =

128 if

129 sspbuf c@ save_to_rbuf

130 release_clock

131 exit

132 then

133 \ State 3: i2c read operation , last byte was address.

134 \ D_nA=0, S=1, R_nW=1

135 sspstat c@ %00101100 and %00001100 =

136 if

137 sspbuf c@ drop

138 0 sindx !

139 wcol sspcon1 mclr

140 sbuf sindx @ + c@ sspbuf c!

141 release_clock

142 incr_sindx

143 exit

144 then

145 \ State 4: i2c read operation , last byte was outgoing data.

146 \ D_nA=1, S=1, R_nW=1, BF=0

147 sspstat c@ stat_mask and %00101100 =

148 ckp sspcon1 mtst 0=

149 and

150 if

151 wcol sspcon1 mclr

152 sbuf sindx @ + c@ sspbuf c!

153 release_clock

154 incr_sindx

155 exit

156 then

157 \ State 5: master NACK , slave i2c logic reset.

158 \ From AN734: D_nA=1, S=1, BF=0, CKP=1, however ,

159 \ we use just D_nA=1 and CKP=1, ignoring START bit.

160 \ This is because master may have already asserted STOP

161 \ before we service the final NACK on a read operation.

162 d_na sspstat mtst 0 > ckp sspcon1 mtst 0 > and

163 stop_bit sspstat mtst or

164 if

165 exit \ Nothing needs to be done.

166 then

167 \ We shouldn ’t arrive here ...

168 err_led_on

169 cr ." Error "

170 ." sspstat " sspstat c@ u.

171 ." sspcon1 " sspcon1 c@ u.

172 ." sspcon2 " sspcon2 c@ u.

173 cr

174 begin again \ Hang around until watch -dog resets MCU.

175 ;

176

177

178 : init (--)

179 %00000011 trisb mclr \ want RB0 ,RB1 as output pins

180 init_rbuf

181 init_sbuf

182 i2c_init

183 led_on err_led_on #200 ms led_off err_led_off

184 ;

185

186 : main (--)

187 cr ." Start I2C slave "

188 init

189 begin

190 sspif pir1 mtst

191 if

192 sspif pir1 mclr

13 AN I2C SLAVE EXAMPLE 48

193 i2c_service

194 then

195 rbuf c@ %00000001 and

196 if led_on else led_off then

197 cwd

198 key? until

199 ;

200

201 \ ’ main is turnkey

With a Saleae Logic Analyser connected, we can see the I2C signals as a result of writing
the byte 0x01 to turn on the LED. The following figure shows the data and clock signals
from the time that the master asserts the START condition (green circle) until it asserts
the STOP condition (as indicated by the red square).

The clock frequency is 100kHz and there is a 138µs gap between the ninth clock pulse of
the address byte and the start of the pulses for the data byte. This gives an indication of
the time needed to service each SSPIF event.

A little later on, the Aardvark reads two bytes from the bus, as shown here.

Zooming in, to show the finer annotation, the same signals are shown below.

Again, the inter-byte gap is 138µs resulting in about 200µs needed to transfer each byte.
This effective speed of 5 kbytes/s should be usable for many applications, since the I2C
bus is typically used for low speed data transfer.

Notes on this program:

• Need to load core.txt before the source code of the i2c-slave.txt.

• Slave examples found in documentation on the Web usually have the service function
written in the context of an interrupt service routine. The MSSP can be serviced
quite nicely without resorting to the use of interrupts, however, you still have to
check and clear the SSPIF bit for each event.

• The implementation of the test for State 5 (Master NACK) is slightly different to
that described in AN734 because it was found that the master would assert an I2C
bus stop after the final NACK of a read operation but before the MCU could service
the SSPIF event. This would mean that STOP was the most recent bus condition
seen by the MSSP and the START and STOP bits set to reflect this. In the figures
shown above, there is only about 12µs between the ninth clock pulse for the second
read data byte and the Aardvark master asserting the STOP condition on the bus.
This period is very much shorter than the (approx.) 140µs period needed by the
slave firmware to service the associated SSPIF event.

14 SPEED OF OPERATION – BIT BANGING 49

14 Speed of operation – bit banging

All of this nice interaction and convenience has some costs. One cost is the number of
MCU instruction cycles needed to process the Forth words. To visualize this cost, the
following program defines a word blink-forth which toggles an IO pin using the high-
level FlashForth words that fetch and store bit patterns into the port latch register. An
alternative word blink-asm uses assembler instructions to achieve an equivalent effect,
but faster, and a third word blink-bits uses the FlashForth bit0: and bit1: words to
create high-level bit-manipulation words that also achieve full machine speed.

14.1 PIC18F26K22

1 -speed -test

2 marker -speed -test

3 \ Waggle RB1 as quickly as we can , in both high - and low -level code.

4 \ Before sending this file , we should send asm.txt so that we have

5 \ the clrwdt , word available. We also need bit.txt.

6

7 $ff8a constant latb

8 $ff93 constant trisb

9

10 : initRB1

11 %10 trisb mclr \ RB1 as output

12 %10 latb mclr \ initially known state

13 ;

14

15 \ high -level bit fiddling , presumably slow

16 : blink -forth (--)

17 initRB1

18 begin

19 %10 latb c! 0 latb c! \ one cycle , on and off

20 %10 latb c! 0 latb c!

21 %10 latb c! 0 latb c!

22 %10 latb c! 0 latb c!

23 cwd \ We have to kick the watch dog ourselves.

24 again

25 ;

26

27 \ low -level bit fiddling , via assembler

28 : blink -asm (--)

29 initRB1

30 [

31 begin ,

32 latb 1 a, bsf , latb 1 a, bcf , \ one cycle , on and off

33 latb 1 a, bsf , latb 1 a, bcf ,

34 latb 1 a, bsf , latb 1 a, bcf ,

35 latb 1 a, bsf , latb 1 a, bcf ,

36 clrwdt , \ kick the watch dog

37 again ,

38]

39 ;

40

41 \ high -level bit fiddling with named bits

42 latb #1 bit1: RB1 -hi inlined

43 latb #1 bit0: RB1 -lo inlined

44 : blink -bits (--)

45 initRB1

46 begin

47 RB1 -hi RB1 -lo \ one cycle

48 RB1 -hi RB1 -lo

49 RB1 -hi RB1 -lo

50 RB1 -hi RB1 -lo

51 cwd

14 SPEED OF OPERATION – BIT BANGING 50

52 again

53 ;

Notes on this program:

• We have had to worry about clearing the watch-dog timer. In the early examples,
the FlashForth interpreter was passing through the pause state often enough to keep
the watch-dog happy. The words in this example give the FlashForth interpreter no
time to pause so we are responsible for clearing the watch-dog timer explicitly.

• In the source code config file for the specific MCU, the watch-dog timer postscale
is set to 256. With a 31.25 kHz oscillator frequency, this leads to a default timeout
period of a little over 1 second (32µs× 128× 256).

• For the PIC18 MCU, the internal oscillator of 16 MHz was multiplied by the PLL to
get 64 MHz oscillator driving the MCU. With 4 clock cycles per instruction cycle,
this gave an instruction period TCY = 62.5 ns. Current consumption by the micro-
controller was about 14 mA, roughly double the value when the interpreter is not
doing much, just waiting for input.

• The screen image on the left shows the output signal for running the high-level
blink-forth word while the image on the right uses the assembler words.

• For the blink-forth word, one on+off cycle of the LED executes in 6 words and
is seen (in the oscilloscope record) to require about 50 instruction cycles. So, on
average, each of these threaded Forth words is executed in about 8 MCU instruc-
tion cycles. Note that this overhead includes the cost of using 16-bit cells for the
data. Extra machine instructions are used to handle the upper bytes. In other
applications, where we actually want to handle 16-bit data, this will no longer be a
penalty.

• The assembler version has no overhead and the cycle time for the MCU instructions
defines the period of the output signal. One on-off cycle requires 2 instructions so
we see a short 125 ns period. This is fast enough that the capacitive loading on the
output pin is noticeable in the oscilloscope trace. Also, the time required for the
machine instructions to clear the watch-dog timer and the instruction jump back to
the start of the loop now shows up clearly in the oscilloscope record.

14 SPEED OF OPERATION – BIT BANGING 51

• The oscilloscope record for the blink-bits word is shown here.

With the bit-manipulation words RB1-hi and RB1-lo being inlined, they also achieve
full machine speed because the generated code is essentially the same as for blink-asm.

14.2 PIC24FV32KA302

1 -speed -test

2 marker -speed -test

3 \ For the PIC24FV32KA302 , waggle RB15 as quickly as we can ,

4 \ in both high - and low -level code.

5 \ Remember to load bit.txt before this file.

6

7 $02c8 constant trisb

8 $02ca constant portb

9 $02cc constant latb

10 $02ce constant odcb

11

12 1 #15 lshift constant bit15

13

14 : initRB15

15 bit15 trisb mclr \ RB15 as output

16 bit15 latb mclr \ initially known state

17 ;

18

19 \ high -level bit fiddling , presumably slow

20 : blink -forth (--)

21 initRB15

22 begin

23 bit15 latb ! 0 latb ! \ one cycle , on and off

24 bit15 latb ! 0 latb !

25 bit15 latb ! 0 latb !

26 bit15 latb ! 0 latb !

27 cwd \ We have to kick the watch dog ourselves.

28 again

29 ;

30

31 \ low -level bit fiddling , via assembler

32 : blink -asm (--)

33 initRB15

34 [

35 begin ,

36 #15 latb bset , #15 latb bclr , \ one cycle , on and off

37 #15 latb bset , #15 latb bclr ,

38 #15 latb bset , #15 latb bclr ,

39 #15 latb bset , #15 latb bclr ,

40] cwd [\ kick the watch dog

41 again ,

14 SPEED OF OPERATION – BIT BANGING 52

42]

43 ;

44

45 \ high -level bit fiddling with named bits

46 latb #15 bit1: RB15 -hi inlined

47 latb #15 bit0: RB15 -lo inlined

48 : blink -bits (--)

49 initRB15

50 begin

51 RB15 -hi RB15 -lo \ one cycle

52 RB15 -hi RB15 -lo

53 RB15 -hi RB15 -lo

54 RB15 -hi RB15 -lo

55 cwd

56 again

57 ;

Notes on this program:

• The order of the assembler arguments is bit-number register-address op-code. This
is different to that seen in the PIC18 version of the program.

• The MCU was configured for running off its internal 8 MHz oscillator with the
4× PLL active and a 1:1 postscaling. This resulted in an instruction cycle period
TCY = 62.5 ns.

• The screen image on the left shows the output signal for running the high-level
blink-forth word while the image on the right uses the assembler words.

• For the blink-forth word, one on+off cycle of the LED executes in 6 words and
is seen (in the oscilloscope record) to require about 42 instruction cycles. So, on
average, each of these threaded Forth words is executed by the 16-bit PIC24 in
7 MCU instruction cycles. This illustrates a benefit of the 16-bit processor, since
the 8-bit PIC18F26K22 required 50 MCU instruction cycles (and a correspondingly
longer time of 3.08 microseconds) for the same effect.

• The assembler version has no overhead and the cycle time for the MCU instructions
defines the period of the output signal. One on-off cycle requires 2 instructions so
we see a short 124 ns period.

• The oscilloscope record for the blink-bits word is shown here.

14 SPEED OF OPERATION – BIT BANGING 53

Again, the bit-manipulation words RB15-hi and RB15-lo also achieve full machine
speed.

14.3 ATmega328P

1 -speed -test

2 marker -speed -test

3 \ Waggle PB5 as quickly as we can , in both high - and low -level code.

4 \ Before sending this file , we should send asm.txt and bit.txt.

5

6 $0024 constant ddrb

7 $0025 constant portb \ RAM address

8 $0005 constant portb -io \ IO -space address

9 1 #5 lshift constant bit5

10

11 : initPB5

12 bit5 ddrb mset \ set pin as output

13 bit5 portb mclr \ initially known state

14 ;

15

16 : cwd (--) [wdr ,] ; inlined \ we might want to reset the watchdog

17

18 \ high -level bit fiddling , presumably slow

19 : blink -forth (--)

20 initPB5

21 begin

22 bit5 portb c! 0 portb c! \ one cycle , on and off

23 bit5 portb c! 0 portb c!

24 bit5 portb c! 0 portb c!

25 bit5 portb c! 0 portb c!

26 cwd

27 again

28 ;

29

30 \ low -level bit fiddling , via assembler

31 : blink -asm (--)

32 initPB5

33 [

34 begin ,

35 portb -io #5 sbi , portb -io #5 cbi , \ one cycle , on and off

36 portb -io #5 sbi , portb -io #5 cbi ,

37 portb -io #5 sbi , portb -io #5 cbi ,

38 portb -io #5 sbi , portb -io #5 cbi ,

39 wdr ,

40 again ,

41]

42 ;

43

44 \ high -level bit fiddling with named bits

14 SPEED OF OPERATION – BIT BANGING 54

45 portb #5 bit1: PB5 -hi inlined

46 portb #5 bit0: PB5 -lo inlined

47 : blink -bits (--)

48 initPB5

49 begin

50 PB5 -hi PB5 -lo \ one cycle

51 PB5 -hi PB5 -lo

52 PB5 -hi PB5 -lo

53 PB5 -hi PB5 -lo

54 cwd

55 again

56 ;

Notes on this program:

• Except for names, this code is essentially the same as for the PIC18 and PIC24
versions of the exercise. FlashForth abstracts away much of the instruction-set
architecture of the microcontroller, leaving us to focus on twiddling the bits of the
peripheral hardware.

• The MCU was configured for running with the 16 MHz crystal, which resulted in a
machine clock cycle period TCY = 62.5 ns.

• The screen image on the left shows the output signal for running the high-level
blink-forth word while the image on the right uses the assembler words.

• For the blink-forth, one on+off cycle of the LED executes in 6 words and is seen (in
the oscilloscope record) to require about 90 instruction cycles. So, on average, each
of these threaded Forth words is executed by the 8-bit AVR in 15 MCU instruction
cycles.

• The assembler version has no overhead and the cycle time for the MCU instructions
defines the period of the output signal. One on-off cycle requires 2 instructions
(sbi and cbi) each requiring 2 clock cycles, so we see a short, quarter-microsecond
period.

• The oscilloscope record for the blink-bits word is shown here.

14 SPEED OF OPERATION – BIT BANGING 55

It can be seen that the bit-manipulation words PB5-hi and PB5-lo achieve full
machine speed.

15 DRIVING AN HITACHI-44780 LCD CONTROLLER 56

15 Driving an Hitachi-44780 LCD controller

The LCD in the photograph on page 7 was driven with the following code. During the
development of this example, a lesson was relearned – that of reading the data sheet [11]
carefully :)

1 \ Exercise LCD on PICDEM2+ board.

2 \ Remember to load bit.txt before this file.

3 -xlcd

4 marker -xlcd

5

6 $ff80 constant porta

7 $ff89 constant lata

8 $ff92 constant trisa

9 $ff83 constant portd

10 $ff8c constant latd

11 $ff95 constant trisd

12

13 \ The LCD is operated in nibble mode.

14 \ RA1 = Enable (E) pin

15 \ RA2 = Read/Write (RW) pin

16 \ RA3 = Register Select (RS) pin

17 \ RD0 = DB4 on LCD

18 \ RD1 = DB5

19 \ RD2 = DB6

20 \ RD3 = DB7

21

22 portd constant dataport

23 lata #1 bit0: Elo

24 lata #1 bit1: Ehi

25 lata #2 bit0: RWlo

26 lata #2 bit1: RWhi

27 lata #3 bit0: RSlo

28 lata #3 bit1: RShi

29

30 : data -port -in (--)

31 trisd c@ $0f or trisd c!

32 ;

33

34 : data -port -out (--)

35 trisd c@ $f0 and trisd c!

36 ;

37

38 : put -nibble (c --)

39 \ Make lower 4 bits of c appear on data port pins.

40 $0f and

41 dataport c@ $f0 and

42 or

43 dataport c!

44 ;

45

46 : short -delay (--)

47 18 for r@ drop next ;

48

49 : Estrobe (--)

50 Ehi short -delay Elo

51 ;

52

53 : lcd -getc (-- c)

54 \ Read the LCD register in two nibbles.

55 \ Remember to select the register line before calling this word.

56 data -port -in

57 RWhi short -delay

58 Ehi short -delay dataport c@ #4 lshift Elo short -delay \ high nibble

59 Ehi short -delay dataport c@ Elo short -delay \ low nibble

60 or \ assemble full byte and leave it on the stack

61 RWlo short -delay

62 ;

15 DRIVING AN HITACHI-44780 LCD CONTROLLER 57

63

64 : lcd -ready? (-- f)

65 \ Read the command register and check busy bit.

66 RSlo short -delay

67 lcd -getc $80 and 0=

68 ;

69

70 : wait -for -lcd (--)

71 begin lcd -ready? cwd until

72 ;

73

74 : lcd -putc (c --)

75 \ Write the LCD register in two nibbles.

76 \ Remember to select the register line before calling this word.

77 dup $f0 and #4 rshift \ high nibble left on top of stack

78 data -port -out

79 RWlo short -delay

80 put -nibble short -delay Estrobe short -delay

81 $0f and \ low nibble now left on top of stack

82 put -nibble short -delay Estrobe short -delay

83 data -port -in

84 ;

85

86 : lcd -clear (--)

87 wait -for -lcd

88 RSlo short -delay

89 %00000001 lcd -putc

90 ;

91

92 : lcd -home (--)

93 wait -for -lcd

94 RSlo short -delay

95 %00000010 lcd -putc

96 ;

97

98 : lcd -goto (c --)

99 \ Set the specified 7-bit data memory address.

100 wait -for -lcd

101 RSlo short -delay

102 $80 or \ sets the highest bit for the command

103 lcd -putc

104 ;

105

106 : lcd -init (--)

107 data -port -in

108 Elo RWlo RSlo

109 %00001110 trisa mclr \ RS, RW and E as output

110 30 ms \ power -on delay

111 \ Begin "initialization by instruction"

112 \ Presumably , the LCD is in 8-bit interface mode.

113 %0011 put -nibble Estrobe 5 ms

114 %0011 put -nibble Estrobe 1 ms

115 %0011 put -nibble Estrobe 1 ms

116 \ Function set for 4-bit interface; it is still in 8-bit mode.

117 %0010 put -nibble Estrobe 1 ms

118 \ Now , we should be in 4-bit interface mode.

119 \ Function set for 4-bit interface , 2 display lines 5x7 font.

120 wait -for -lcd

121 %00101000 lcd -putc

122 \ Increment cursor after each byte , don ’t shift display.

123 wait -for -lcd

124 %00000110 lcd -putc

125 \ Display off

126 wait -for -lcd

127 %00001000 lcd -putc

128 \ Display clear

129 %00000001 lcd -putc

130 5 ms

131 \ End of "initialization by instruction"

132 \ Enable cursor and display , no blink.

133 wait -for -lcd

15 DRIVING AN HITACHI-44780 LCD CONTROLLER 58

134 %00001110 lcd -putc 1 ms

135 wait -for -lcd

136 ;

137

138 : lcd -emit (c --) \ Write the byte into data memory.

139 wait -for -lcd

140 RShi short -delay

141 lcd -putc

142 ;

143

144 : lcd -type (c-addr n --) \ send string

145 for c@+ lcd -emit next

146 drop

147 ;

148

149 : main

150 ." Begin ..."

151 lcd -init

152 cr ." lcd -init done."

153 s" Hello from" lcd -type

154 $40 lcd -goto

155 s" FlashForth 5.0" lcd -type

156 cr ." exercise done."

157 ;

REFERENCES 59

References

[1] Mikael Nordman. FLASHFORTH: for PIC and Atmega. URL http://flashforth.com,
mikael.nordman@flashforth.com, 2014.

[2] Microchip Technology Inc. PIC18(L)F2X/4XK22 data sheet 28/40/44-pin, low-
power, high-performance microcontrollers with XLP technology. Datasheet
DS41412F, Microchip Technology Inc., www.microchip.com, 2012.

[3] Microchip Technology Inc. PIC24FV32KA304 FAMILY 20/28/44/48-pin, general
purpose, 16-bit flash microcontrollers with XLP technology. Datasheet DS39995D,
Microchip Technology Inc., www.microchip.com, 2013.

[4] Atmel. Atmel 8-bit Microcontroller with 4/8/16/32KBytes In-System Programmable
Flash ATmega48A; ATmega48PA; ATmega88A; ATmega88PA; ATmega168A;
ATmega168PA; ATmega328; ATmega328P. Datasheet 8271GAVR02/2013,
www.atmel.com, 2013.

[5] L. Brodie and Forth Inc. Starting Forth: An introduction to the Forth Language and
operating system for beginners and professionals, 2nd Ed. Prentice Hall, Englewood
Cliffs, New Jersey, 1987.

[6] S. Pelc. Programming Forth. Microprocessor Engineering Limited, 2011.

[7] E. K. Conklin and E. D. Rather. Forth Programmer’s Handbook, 3rd Ed. Forth Inc.,
California, 2007.

[8] Peter Jacobs, Peter Zawasky, and Mikael Nordman. Elements of FlashForth. School
of Mechanical and Mining Engineering Technical Report 2013/08, The University of
Queensland, Brisbane, May 2013.

[9] Microchip Technology Inc. MCP3422/3/4: 18-bit, multi-channel ∆Σ analog-to-
digital converter with I2C interface and on-board reference. Datasheet DS22088C,
Microchip Technology Inc., www.microchip.com, 2009.

[10] S. Bowling and N. Raj. Using the PIC devices SSP and MSSP modules for slave I2C
communication. Application Note AN734, Microchip Technology Inc., 2008.

[11] Hitachi. HD44780U (LCD-II) (Dot Matrix Liquid Crystal Display Controller/Driver).
Datasheet ADE-207-272(Z) ’99.9 Rev. 0.0, Hitachi., 1999.

A USING OTHER TERMINAL PROGRAMS ON LINUX 60

A Using other terminal programs on Linux

As discussed in Section 4, interaction with the programmed MCU is via the serial port.
There are a number of generic terminal emulation programs that will communicate via
a serial port. On a linux machine the cutecom terminal program is very convenient. It
has a line-oriented input that doesn’t send the text to the MCU until you press the enter
key. This allows for editing of the line before committing it to the MCU and convenient
recall of previous lines. GtkTerm is available as more conventional terminal program.
The following images shows the GtkTerm window just after sending the content of the
flash-led.txt file to the PIC18F26K22. The device name of /dev/ttyUSB0 refers to
the USB-to-serial interface that was plugged one of the PC’s USB ports. It is convenient
to start GtkTerm with the command

$ sudo gtkterm

and then adjust the communication settings via the Configuration → Port menu item
and its associated dialog window.

There is also a send-file capability and, importantly, the capability to set the period be-
tween lines of text that are sent to the serial port so as to not overwhelm the FlashForth
MCU. Although USB-to-serial interfaces usually implement software Xon-Xoff handshak-
ing, my experience of using them with a minimal 3-wire connection (GND, RX and TX)
has been variable. When sending large files, an end-of-line delay of a few tens of millisec-
onds has usually been found adequate, however, there have been times that a file would
not successfully load until the end-of-line pause was increased to 300 milliseconds. For
GtkTerm, this setting is under the Advanced Configuration Options in the port con-
figuration dialog, as shown below. This end-of-line delay makes the transfer of large files
slow, however, the text still scrolls past quickly but is now at a pace where it is possible to
follow the dialog and know how well the compilation is going. Building your application
code incrementally, with small files, is a good thing.

A USING OTHER TERMINAL PROGRAMS ON LINUX 61

	A selection of microcontrollers
	Development boards
	PIC18 family boards
	AVR and PIC24 boards

	FlashForth
	Getting FlashForth and programming the MCU
	Building for the PIC18F26K22 or PIC18F46K22
	Building for the PIC24FV32KA302
	Building for the ATmega328P

	Interacting with FlashForth
	Introductory examples
	Hello, World: Flash a LED on the PIC18FX6K22
	Flash a LED on the PIC24FV32KA302
	Flash a LED on the ATmega328P
	Set the cycle duration with a variable (PIC18FX6K22)
	Hello, World: Morse code

	Read and report an analog voltage
	PIC18FX6K22
	PIC24FV32KA30X

	Counting button presses
	Counting button presses via interrupts
	Scanning a 4x3 matrix keypad
	Base words for an I2C master
	PIC18FX6K22
	PIC24FV32KA30X
	ATmega328P
	Notes on using the words
	Detecting I2C devices

	Using I2C to get temperature measurements
	Making high-resolution voltage measurements
	An I2C slave example
	Speed of operation – bit banging
	PIC18F26K22
	PIC24FV32KA302
	ATmega328P

	Driving an Hitachi-44780 LCD controller
	Using other terminal programs on Linux

